338 EDGAR REICH

zero entries in $m \, \varepsilon \, M$ determines whether or not $m \, \varepsilon \, I$. Now A'(1), A'(2), \cdots is an increasing sequence of subsets of M', which has less than 2^{n^2} elements, so there must be a smallest r, $1 \leq r \leq 2^{n^2}$, such that A'(r) = A'(r+1). To complete the proof we need only show that A'(r) = A' since if $A(r) \subset A(2^{n^2}) \subset I$ then $A' = A'(r) \subset I'$ so $A \subset I$. Thus we need only prove that if $k \geq 1$ and A'(k) = A'(k+1) then A'(k+1) = A'(k+2). Now if $m \, \varepsilon \, A(k+2)$ then m = bc, where $b \, \varepsilon \, A(k+1)$ and $c \, \varepsilon \, A(1)$ so there exists a $d \, \varepsilon \, A(k)$ with b' = d' so $m' = (dc)' \, \varepsilon \, A'(k+1)$ and the proof is complete.

We conclude with three comments. Clearly A'(1) determines whether or not $A \subset I$ so that if A(1) is an infinite set, which is not the case for indecomposable channels, then A(1) may, for the purpose of determining whether or not $A \subset I$, be replaced by any finite $B \subset M$ with B' = A'(1). If $m \in A$ has a state which is periodic with period d > 1 then $m^d \notin I$ and $m^d \in A$ so $A \subset I$. For any A(1), $(A(2^{n^2}))' = A'$.

REFERENCES

- Blackwell, D. (1961). Exponential error bounds for finite state channels. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1 57-63. Univ. of California Press, Berkeley.
- [2] BLACKWELL, D., BREIMAN, L., and THOMASIAN, A. J. (1958). Proof of Shannon's transmission theorem for finite-state indecomposable channels. Ann. Math. Statist. 18 1209-1220.
- [3] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [4] FELLER, WILLIAM (1957). An Introduction to Probability Theory and its Applications 1 (2nd ed.). Wiley, New York.
- Wolfowitz, J. (1961). Coding Theorems of Information Theory. Springer-Verlag, Berlin; and Prentice-Hall, Englewood Cliffs, N. J.

NOTE ON QUEUES IN TANDEM¹

By Edgar Reich

University of Minnesota

1. Introduction. Assume that Q_k , $k=1,2,\cdots,m$, is a single server queue where customers are served with an exponential service time distribution of mean $1/\mu_k$. We shall assume that the *j*th customer, C_j , arrives at Q_1 at time t_j , where $\{t_j\}$ are the events of a Poisson process, and λ the number of arrivals per unit time. The queues Q_k are arranged in tandem; that is, after C_j 's service at Q_k is completed he proceeds to Q_{k+1} and joins the queue there. We shall extend a result of our previous paper [1] for the foregoing situation.

Let T_{jk} denote C_j 's waiting time at Q_k , including the duration of C_j 's service at Q_k . The purpose of the present note is to show, using the results of [1], that under "equilibrium" conditions the probabilistic description of the random

Received March 26, 1962.

¹ This work was done with support under Contract Nonr-710(16).