THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX WISHART DISTRIBUTED MATRIX

By N. R. GOODMAN¹

Space Technology Laboratories

Summary. Let $\xi' = (\mathbf{Z}_1, \mathbf{Z}_2, \cdots, \mathbf{Z}_p)$ denote a p-variate zero mean complex Gaussian random variable with nonsingular Hermitian covariance matrix $\Sigma_{\xi} = E\xi \xi' = \|\sigma_{jk}\|$. The generalized variance of ξ is $\sigma_{\xi}^2 \equiv \det(\Sigma_{\xi})$. The real and imaginary parts of the complex random variables \mathbf{Z}_j $j = 1, 2, \cdots p$ are taken to have the special covariance structure described in Goodman [1] and [2] so that the Hermitian covariance matrix Σ_{ξ} then determines the probability structure of the random variable ξ . Let $\xi_1, \xi_2, \cdots, \xi_s, \cdots, \xi_n$ denote n independent and identically distributed p-variate zero mean complex Gaussian random variables with Hermitian covariance matrix Σ_{ξ} . The sample Hermitian covariance matrix $\hat{\Sigma}_{\xi} \equiv (1/n) \sum_{s=1}^{n} \xi_s \bar{\xi}'_s \equiv \|\hat{\mathbf{o}}_{jk}\|$ is then complex Wishart distributed. The sample generalized variance of ξ is $\hat{\mathbf{o}}_{\xi}^2 \equiv \det(\hat{\Sigma}_{\xi})$. The random variables with $2n, 2(n-1), \cdots, 2(n-p+1)$ degrees of freedom respectively.

Definition 1.1. Let $\xi' = (\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_p)$ denote a p-variate zero mean complex Gaussian random variable with nonsingular Hermitian covariance matrix $\Sigma_{\xi} = E\xi\overline{\xi}' = \|\sigma_{jk}\|$. The generalized variance of ξ is $\sigma_{\xi}^2 \equiv \det(\Sigma_{\xi})$.

COMMENT 1.1. Throughout the paper the real and imaginary parts of the complex random variables \mathbf{Z}_j , $j=1, 2, \dots, p$ are taken to have the special covariance structure described in Goodman [1] and [2] so that the Hermitian covariance matrix Σ_{ξ} then determines the probability structure of the random variable ξ .

DEFINITION 1.2. Let ξ_1 , ξ_2 , \cdots , ξ_s , \cdots , ξ_n denote n independent and identically distributed p-variate zero mean complex Gaussian random variables with Hermitian covariance matrix Σ_{ξ} . The sample Hermitian covariance matrix $\hat{\Sigma}_{\xi} \equiv (1/n) \sum_{s=1}^{n} \xi_s \vec{\xi}'_s \equiv \|\hat{\mathbf{d}}_{jk}\|$. The sample generalized variance of ξ is $\hat{\mathbf{d}}_{\xi}^2 \equiv \det{(\hat{\Sigma}_{\xi})}$. Theorem 1.1. The random variable $(2n)^p \hat{\mathbf{d}}_{\xi}^2 / \sigma_{\xi}^2$ is distributed as is the product of p independent χ^2 random variables with 2n, 2(n-1), \cdots , 2(n-p+1) degrees of freedom respectively.

PROOF. The method of proof is as follows: The characteristic function of the random variable $\ln [(2n)^p \hat{\mathfrak{d}}_{\xi}^2/\sigma_{\xi}^2]$ is computed. The characteristic function of a random variable which is the sum of p independent $\ln \chi^2$ random variables with $2n, 2(n-1), \cdots, 2(n-p+1)$ degrees of freedom respectively is computed. The two characteristic functions are compared and seen to be equal. The characteristic function of the random variable $\mathbf{V} = \ln [(2n)^p \hat{\mathfrak{d}}_{\xi}^2/\sigma_{\xi}^2]$ is

Received October 19, 1960; revised August 16, 1962.

¹ Currently an independent consultant.