A COMBINATORIAL THEOREM FOR PARTIAL SUMS

By R. L. Graham

Bell Telephone Laboratories

1. Introduction. Let (x_1, \dots, x_n) be a sequence of real numbers, $s_k = \sum_{j=1}^k x_j$ and $M_k = \max(s_1, \dots, s_k)$. As usual let the superscript + mean maximize with zero. In a recent paper of M. Dwass [2], a theorem equivalent to the following is proved (generalizing a result of Kac [3] and Spitzer [4]):

Theorem. $\sum_{\sigma} (M_n^+ - M_{n-1}^+) = s_n^+$ where σ ranges over all cyclic permutations of (x_1, \dots, x_n) .

In this note we give a generalization of this theorem. It will be seen that several recent results of L. Takács [5], [6] may be derived from this extension.

2. The basic theorems. We begin with a preliminary lemma. Let $X = (x_1, \dots, x_n)$ be a sequence of real numbers. Let m(X) denote the rth largest term of X (or zero if r > n) and let m(X, y) abbreviate $m((x_1, \dots, x_n, y))$.

LEMMA. If
$$y \ge 0$$
 then
$$m(X, y)^+ - m(X)^+ = m(X, y) - m(X, 0).$$

Proof. There are three cases:

- (i) Suppose $m(X, y) \leq 0$. Since $y \geq 0$ then m(X, 0) = m(X, y) and $m(X)^+ = 0$ $m(X, y)^+ = 0$ and (1) follows.
- (ii) Suppose m(X, y) > 0 and m(X) > 0. Then $m(X, y)^+ = m(X, y)$ and $m(X)^{+} = m(X) = m(X, 0)$ and (1) follows.
- (iii) Suppose m(X, y) > 0 and $m(X) \leq 0$. Since $y \geq 0$ then a moment's reflection shows that $m(X)^+ = 0 = m(X, 0)$. But we have $m(X, y)^+ = 0$ m(X, y) and so (1) follows.

This completes the proof.

Now denote the partial sum $\sum_{j=1}^k x_j$ by s_k . Suppose $1 \le r \le n$ and let $m_k =$ $m((s_1, \dots, s_k))$. Then we have Theorem 1. $\sum_{\sigma} (m_n^+ - m_{n-1}^+) = s_n^+$ where σ ranges over all cyclic permutations

of (x_1, \dots, x_n) .

Proof. If $s_n < 0$ then the theorem is immediate since in this case $s_n^+ = 0$ $m_n^+ - m_{n-1}^+$ for all permutations of the x_i . Assume $s_n \ge 0$ and note that

$$m_n = m((x_1, x_1 + x_2, \dots, x_1 + \dots + x_n))$$

= $x_1 + m((0, x_2, x_2 + x_3, \dots, x_2 + \dots + x_n)).$

Therefore by the lemma

$$\sum_{\sigma} (m_n^+ - m_{n-1}^+) = \sum_{\sigma} (m_n - m((x_1, x_1 + x_2, \dots, x_1 + \dots + x_{n-1}, 0)))$$

$$= \sum_{\sigma} (x_1 + m((0, x_2, x_2 + x_3, \dots, x_2 + \dots + x_n))$$

$$- m((0, x_1, x_1 + x_2, \dots, x_1 + \dots + x_{n-1})))$$

$$= x_1 + \dots + x_n = s_n$$

Received April 9, 1963.