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1. Introduction.

1. Preliminary. This paper deals with the problem of finding (necessary or
sufficient) conditions for the strong law of large numbers in the case of a Markov
chain.

The results proved in this paper are of classical form, i.e. they come very close
to those of Cantelli, Borel, Khintchine, Kolmogorov for mutually independent
random: variables; these classical results themselves remain true for a very
large class of non-homogeneous Markov chains (for which a; > p > 0,7¢1 =
(1,2, ---)). In the same way we obtain new results for homogeneous Markov
chains (a; = p > 0, 7 £ I); these results contain as particular cases the analogous
results for mutually independent random variables (a; = 1, e 1).

A part of these results was announced in preliminary papers ([11]-[13]).

We express our results by means of the ergodic coefficient of a stochastic transi-
tion function ([2], [1]); in [9] can be found various of its definitions and proper-
ties that we shall use here.

2. Notations and definitions. Let (2;, Z:) be a measurable space, z; the ele-
ments of %;, A; the measurable sets, elements in the o-algebra 2.(¢ e I). If the
sequence of random variables £;(7 & I) is a Markov chain, let us consider that it
has the stochastic transition functions P;(x;, A:y1) with domains of definition
(%, Z¢, Yiga, Zip1) (G e I). We denote by a; = a(P.) the ergodic coefficient of
P; and by a;; = a(P;;) that of the transition function P;;(z;, 4;) for the time
interval 4, j( + 1 < 7). We shall suppose that all the variances D£:(4 e I) are
finite and we set

(1) o =1—n =mingma, Dp=2 Di.

We assume that a; > 0(¢ € I), because in many important formulae (Basic
Lemma, Lemma 1, Theorem 1) o™ appears in the denominator.

The random variables o.(i € I) are called strongly stable, if there is some numerical
sequence di(i € I) so that for n — «, ¢, — d, converges to zero with probability 1.
In this case it is possible, [7], to take d; = mo;(m—the median); thesi(z & I) are
called normally strongly stable if it is possible to take d; = Mo; (M—the expecta-
tion). Let

(2) So= D2 t, oa=n"8, U= maXigeza|Se — M8, (nel).
=]
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