SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS

By M. ROSENBLATT-ROTH

University of Bucharest

1. Introduction.

1. Preliminary. This paper deals with the problem of finding (necessary or sufficient) conditions for the strong law of large numbers in the case of a Markov chain.

The results proved in this paper are of classical form, i.e. they come very close to those of Cantelli, Borel, Khintchine, Kolmogorov for mutually independent random variables; these classical results themselves remain true for a very large class of non-homogeneous Markov chains (for which $\alpha_i > \rho > 0$, $i \in I = (1, 2, \cdots)$). In the same way we obtain new results for homogeneous Markov chains $(\alpha_i = \rho > 0, i \in I)$; these results contain as particular cases the analogous results for mutually independent random variables $(\alpha_i = 1, i \in I)$.

A part of these results was announced in preliminary papers ([11]-[13]).

We express our results by means of the ergodic coefficient of a stochastic transition function ([2], [1]); in [9] can be found various of its definitions and properties that we shall use here.

2. Notations and definitions. Let $(\mathfrak{A}_i, \Sigma_i)$ be a measurable space, x_i the elements of \mathfrak{A}_i , A_i the measurable sets, elements in the σ -algebra $\Sigma_i(i \, \varepsilon \, I)$. If the sequence of random variables $\xi_i(i \, \varepsilon \, I)$ is a Markov chain, let us consider that it has the stochastic transition functions $P_i(x_i, A_{i+1})$ with domains of definition $(\mathfrak{A}_i, \Sigma_i, \mathfrak{A}_{i+1}, \Sigma_{i+1})(i \, \varepsilon \, I)$. We denote by $\alpha_i = \alpha(P_i)$ the ergodic coefficient of P_i and by $\alpha_{ij} = \alpha(P_{ij})$ that of the transition function $P_{ij}(x_i, A_j)$ for the time interval i, j(i+1 < j). We shall suppose that all the variances $D\xi_i(i \, \varepsilon \, I)$ are finite and we set

(1)
$$\alpha^{(n)} = 1 - \eta_n = \min_{1 \le i < n} \alpha_i, \qquad D_n = \sum_{i=1}^n D\xi_i.$$

We assume that $\alpha_i > 0$ ($i \in I$), because in many important formulae (Basic Lemma, Lemma 1, Theorem 1) $\alpha^{(n)}$ appears in the denominator.

The random variables $\sigma_i(i \in I)$ are called strongly stable, if there is some numerical sequence $d_i(i \in I)$ so that for $n \to \infty$, $\sigma_n - d_n$ converges to zero with probability 1. In this case it is possible, [7], to take $d_i = m\sigma_i(m$ —the median); the $\sigma_i(i \in I)$ are called normally strongly stable if it is possible to take $d_i = M\sigma_i$ (M—the expectation). Let

$$(2) S_n = \sum_{i=1}^n \xi_i, \sigma_n = n^{-1}S_n, \mathfrak{U}_n = \max_{1 \le s \le n} |S_s - MS_s|, (n \in I).$$

Received 8 January 1963; revised 27 September 1963.