COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2×2 CONTINGENCY TABLES

By W. L. Harkness¹ and L. Katz²

- Pennsylvania State University and Michigan State University
- 1. Introduction. One of the classical problems in statistical theory is that of testing for independence in 2×2 contingency tables. Barnard [1] delineated three distinct experimental situations, [termed the double dichotomy (DD), the 2×2 comparative trial (CT), and the 2×2 independence trial (IT)] which lead to the presentation of data in the form of 2×2 contingency tables. Approximate power functions for tests of independence were considered by Patnaik [10] and Sillitto [12] for the 2×2 CT, and Bennett and Hsu [2] have calculated exact values of power for the 2×2 IT and 2×2 CT, in each case the test used being the conditional test devised concurrently by Yates [14] and Fisher [5]. However, power calculations for the DD have not been made, and hence comparisons of the power functions in the three situations are lacking. This paper represents a contribution in this last direction.
- **2.** Distribution theory. Abstractly, the three experimental situations as outlined by Barnard are describable in the following manner:
- I. Double Dichotomy (DD). A total of n similar balls is randomly selected from an urn containing a large number of balls, each ball labeled A_1 or A_2 and also labeled B_1 or B_2 . An observed result of the experiment is represented in the form of Table I, where none of the marginal totals are fixed and n_{11} is the observed number of balls labeled A_1 and B_1 . It is assumed that the probabilities of occurrence of the various markings of the balls is given by Table II, together with the marginal sums.
- II. 2×2 Comparative Trial (CT). Samples of sizes n_1 and n_2 are drawn from urns A_1 and A_2 respectively. The numbers of balls labeled B_1 in the two samples (i.e., n_{11} and n_{21}) constitute independent variables with binomial distributions, where the proportion of balls marked B_1 in urn A_i is p_i , i = 1, 2. With this type of experiment, one set of marginal totals is fixed in advance as in Table I, namely, n_1 and n_2 .
- III. 2×2 Independence Trial (IT). A total of n similar balls, n_1 marked A_1 and n_2 marked A_2 , are placed in an urn, then withdrawn randomly in order. They are then placed in a row of n cells, of which n_1 have been labeled B_1 and n_2 labeled B_2 . The result of the experiment is presented in Table I, where n_{11} is the observed number of balls marked A_1 in receptacles labeled B_1 . Both sets of marginal totals are fixed in advanced by the conditions of the experiment.

The probability of observing the sample point $(n_{11}, n_{12}, n_{21}, n_{22})$ in the DD

Received 12 November 1963; revised 12 March 1964.

1115

¹ Research sponsored by the Office of Naval Research.

² Research sponsored by the Office of Naval Research and by NSF Grant G 18976.