A RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING SUCCESSIONS

By John Riordan

Bell Telephone Laboratories, Incorporated, New Jersey

1. Introduction. For n elements, the rising successions in question are $12, 23, \dots, \overline{n-1}n$; the falling successions are $21, 32, \dots, n\overline{n-1}$. The enumeration of the permutations of the title has been considered by Irving Kaplansky [1] in the form of what he calls the "n-kings problem": in how many ways may n kings be placed on an n by n chessboard so that no two attack each other? In a later paper [2], he has treated the more general problem of enumerating permutations of n elements by the number of successions of either kind (more briefly, by the number of instances in which i is next to i+1, $i=1, 2, \dots, n-1$). If S_{nk} is the typical number of such an enumeration, $S_n(t) = \sum S_{nk}t^k$ is called the enumerator (of permutations by number of successions); $S_n(t)$ is a polynomial in t of degree n-1.

It will be shown that

(1)
$$S_n(t) = (n+1-t)S_{n-1}(t) - (1-t)(n-2+3t)S_{n-2}(t) - (1-t)^2(n-5+t)S_{n-3}(t) + (1-t)^3(n-3)S_{n-4}(t), n > 3$$

with $S_0(t) = S_1(t) = 1$, $S_2(t) = 2t$, $S_3(t) = 4t + 2t^2$. Recurrence (1) has the particular virtue of reducing to the following pure recurrence for the numbers of the title, $S_n = S_n(0)$:

(2)
$$S_n = (n+1)S_{n-1} - (n-2)S_{n-2} - (n-5)S_{n-3} + (n-3)S_{n-4}, \quad n > 3.$$

2. Preliminary résumé. The results of [1] and [2] needed for present purposes are as follows:

(3)
$$S_n(t) = \sum_{k=0}^n A_{nk}(n-k)!(t-1)^k,$$

where

(4)
$$A_{nk} = A_{n-1,k} + A_{n-1,k-1} + A_{n-2,k-1}, \qquad n > 1$$

or

(5)
$$A_n(x) = \sum_{k=0}^n A_{nk} x^k = (1 + x) A_{n-1}(x) + x A_{n-2}(x)$$

where, by convention, $A_0(x) = A_1(x) = 1$. It following at once from (3) and (4) that (primes denote derivatives)

(6)
$$S_n(t) = (n-1+t)S_{n-1}(t) + (1-t)S'_{n-1}(t) - (n-1)(1-t)S_{n-2}(t) - (1-t)^2S'_{n-2}(t), n > 1$$

Received 30 October 1964.