THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY GROUPS OF TRANSFORMATIONS

By T. S. PITCHER

Lincoln Laboratory, Massachusetts Institute of Technology

Introduction. Let x_{α} be a 1-parameter family of stochastic processes and P_{α} the associated probability measures on the space of sample functions. We assume that the x_{α} are gotten from x_0 by the application of a group T_{α} of transformations, i.e., that T_{α} is a group of automorphisms on an algebra F, of bounded measurable functions dense in $L_1(P_0)$ and that $\int T_{\alpha} f \, dP_0 = \int f \, dP_{\alpha}$ for all f in F and all α .

In Section 2 we classify these problems as being conservative, dissipative, or mixed in analogy with terminology of ergodic theory. It turns out that many problems of interest are dissipative. Section 3 contains several such examples. Section 4 gives results on the spectrum of the associated isometries of $L_s(P_0)$ and on the asymptotic behavior of $dP_{\alpha}(x)/dP_0$ in the dissipative case.

- 2. The conservative and dissipative sets. Throughout this paper we will assume that the P_{α} are mutually absolutely continuous, that the T_{α} preserve bounds and either
- (1) $T_{\alpha}f(x)$ has a continuous derivative $D(T_{\alpha}f)(x)$ in α which is bounded uniformly in α and x for every f in F and every x, or
- (2) $T_{\alpha}f$ has an L_1 -continuous L_1 -derivative $DT_{\alpha}f$ for every f in F and $||DT_{\alpha}f|| = O(e^{K|\alpha|})$ for some K independent of f.

We shall write P for P_0 .

It has been shown [for condition (1) see [4] (Theorem 1, p. 272) and for condition (2) see [5] (Theorem 3.3)] that the above conditions imply that T_{α} can be extended to a group of automorphisms of all measurable functions and that the maps of $L_1(P)$, defined by

$$V_{\alpha}f = (dP_{\alpha}/dP), T_{-\alpha}f$$

form a strongly continuous 1-parameter group of isometries.

Thus $dP_{\alpha}/dP = V_{\alpha}(1)$ is L_1 continuous and it follows that we may regard dP_{α}/dP as a measurable stochastic process. By Fubini's theorem then $\int_{-T}^{T} [dP_{\alpha}(x)/dP] d\alpha$ exists and is finite for every finite T for almost all x. Set

$$q(x) = \int_{-\infty}^{\infty} \left[dP_{\alpha}(x) / dP \right] d\alpha.$$

We define the *conservative* set C to consist of those x with $q(x) = \infty$ and the dissipative set D to consist of those x with $q(x) < \infty$.

Lemma 2.1. The sets C and D are invariant under the T_{α} , to within sets of meas-

529

Received 19 October 1964.

¹ Operated with support from the U.S. Air Force.