MOMENTS OF RANDOMLY STOPPED SUMS

By Y. S. Chow, Herbert Robbins, and Henry Teicher

Purdue University, Columbia University, and Purdue University

1. Introduction. Let $(\Omega, \mathfrak{F}, P)$ be a probability space, let x_1, x_2, \cdots be a sequence of random variables on Ω , and let \mathfrak{F}_n be the σ -algebra generated by x_1, \dots, x_n , with $\mathfrak{F}_0 = (\phi, \Omega)$. A stopping variable (of the sequence x_1, x_2, \dots) is a random variable t on Ω with positive integer values such that the event $[t = n] \varepsilon \mathfrak{F}_n$ for every $n \geq 1$. Let $S_n = \sum_{i=1}^n x_i$; then $S_t = S_{t(\omega)}(\omega) = \sum_{i=1}^t x_i$ is a randomly stopped sum. We shall always assume that

(1)
$$E|x_n| < \infty, \qquad E(x_{n+1} \mid \mathfrak{F}_n) = 0, \qquad (n \ge 1).$$

The moments of S_t have been investigated since the advent of Sequential Analysis, beginning with Wald [9], whose theorem states that for independent, identically distributed (iid) x_i with $Ex_i = 0$, $Et < \infty$ implies that $ES_t = 0$. For higher moments of S_t , the known results [1, 3, 4, 5, 10] are not entirely satisfactory. We shall obtain theorems for ES_t^r (r=2,3,4); the case r=2 is of special interest in applications. For iid x_i with $Ex_i = 0$ and $Ex_i^2 = \sigma^2 < \infty$, we shall show that $Et < \infty$ implies $ES_t^2 = \sigma^2 Et$.

2. The second moment. It follows from assumption (1) that $(S_n, \mathfrak{F}_n; n \geq 1)$ is a martingale; i.e., that

(2)
$$E|S_n| < \infty, \qquad E(S_{n+1} \mid \mathfrak{F}_n) = S_n \qquad (n \ge 1).$$

The following well-known fact ([3], p. 302) will be stated as

Lemma 1. Let $(S_n, \mathfrak{F}_n; n \geq 1)$ be a martingale and let t be any stopping variable such that

(3)
$$E|S_t| < \infty, \quad \liminf_{t>n} |S_n| = 0;$$

then

(4)
$$E(S_t \mid \mathfrak{F}_n) = S_n \quad \text{if} \quad t \geq n \qquad (n \geq 1),$$

and hence $ES_t = ES_1$. LEMMA 2. If $E\sum_{t=1}^{t}|x_i| < \infty$, then (3) holds. PROOF. $|S_t| \leq \sum_{t=1}^{t}|x_i|$, so that $E|S_t| < \infty$, and

$$\lim \int_{[t>n]} |S_n| \le \lim \int_{[t>n]} \sum_{i=1}^{t} |x_i| = 0.$$

In the remainder of this section we shall suppose, in addition to (1) that

$$Ex_n^2 < \infty \qquad (n \ge 1)$$

and we define for $n \ge 1$

Received 31 December 1964.