SOME APPLICATIONS OF MONOTONE OPERATORS
IN MARKOV PROCESSES

BY J. MACQUEEN AND R. M. REDHEFFER

University of California, Los Angeles

1. Introduction. This paper establishes uniqueness, stability, and methods of error estimation for a broad class of integro-differential equations that arise in the study of Markov processes. In Section 2 we consider the equation $Tu = 0$, where T is defined for real-valued differentiable functions u on an interval S of the real line by

$$
(Tu)(x) = u(x) - g(x, u'(x)) - \alpha(x) \int_S u(y) \, dF_x(y).
$$

Here $g(x, y)$ is a real-valued function defined for all $x \in S$ and all real y, $\alpha(x)$ satisfies $0 \leq \alpha(x) \leq 1$, and for each $x \in S$, F_x is a distribution function on S. In Section 3 the treatment is extended to an arbitrary space S. Here the variable u' is suppressed and T is defined for real-valued functions u on S by

$$
(Tu)(x) = u(x) - g(x) - \alpha(x) \int_S u(y) \, dP_x(y),
$$

where for each $x \in S$, P_x is a probability measure on a fixed σ-algebra in S.

Using very elementary methods, it is shown that these operators are monotone in the sense of Collatz [3], viz., $Tu \leq Tv \Rightarrow u \leq v$. The uniqueness, stability, and error estimation mentioned above are easily obtained from this property.

Equations of the type $Tu = 0$ are frequently satisfied by absorption probabilities, mean passage times and various other expectations associated with a Markov process in the space S. Some examples illustrating how the operator T arises are described in Section 4. The same methods have been extended to the functional equations encountered in Markovian decision problems [1], [2]. These applications are considered elsewhere.

2. S an interval of the real line. Let S be a finite or infinite interval of the real line, and let S^* be its open interior (a, b). We say ‘$u \leq v$ on the boundary’ if $\lim_{x \to a^+} u(x) = v(x)$, and ‘$u = v$ on the boundary’ if $\lim_{x \to b^-} [u(x) - v(x)] = 0$.

We consider now the operator T defined by (1). The distribution function F_x is taken continuous from the right.

Theorem 1. Suppose $u \leq v$ on the boundary. If $\alpha(x)F_x(x) < 1$ at each $x \in S^*$, then $Tu \leq Tv$ on S^* implies $u \leq v$.

Proof. Suppose $\sup_{x \in S} [u(x) - v(x)] = m > 0$, with m necessarily finite. Then there is a largest value of x, say x_0, such that $u - v = m$ at x_0; moreover, $x_0 < b$, since $u \leq v$ on the boundary. To the right of x_0 we have $u - v < m$, at

Received 5 May 1965.

1 Research was supported in part by a grant from the Ford Foundation, and in part by the Office of Naval Research (Contract 238(75)).