SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES

By J. MacQueen¹ and R. M. Redheffer

University of California, Los Angeles

1. Introduction. This paper establishes uniqueness, stability, and methods of error estimation for a broad class of integro-differential equations that arise in the study of Markov processes. In Section 2 we consider the equation Tu=0, where T is defined for real-valued differentiable functions u on an interval S of the real line by

(1)
$$(Tu)(x) = u(x) - g(x, u'(x)) - \alpha(x) \int_{S} u(y) dF_{x}(y).$$

Here g(x, y) is a real-valued function defined for all $x \in S$ and all real y, $\alpha(x)$ satisfies $0 \le \alpha(x) \le 1$, and for each $x \in S$, F_x is a distribution function on S. In Section 3 the treatment is extended to an arbitrary space S. Here the variable u' is suppressed and T is defined for real-valued functions u on S by

(2)
$$(Tu)(x) = u(x) - g(x) - \alpha(x) \int_{S} u(y) dP_{x}(y),$$

where for each $x \in S$, P_x is a probability measure on a fixed σ -algebra in S.

Using very elementary methods, it is shown that these operators are monotone in the sense of Collatz [3], viz., $Tu \leq Tv \Rightarrow u \leq v$. The uniqueness, stability, and error estimation mentioned above are easily obtained from this property.

Equations of the type Tu=0 are frequently satisfied by absorption probabilities, mean passage times and various other expectations associated with a Markov process in the space S. Some examples illustrating how the operator T arises are described in Section 4. The same methods have been extended to the functional equations encountered in Markovian decision problems [1], [2]. These applications are considered elsewhere.

2. S an interval of the real line. Let S be a finite or infinite interval of the real line, and let S^* be its open interior (a, b). We say ' $u \le v$ on the boundary' if $\limsup_{x\to a+,x\to b-} [u(x) - v(x)] \le 0$, and 'u = v on the boundary' if $\lim_{x\to a+,x\to b-} [u(x) - v(x)] = 0$.

We consider now the operator T defined by (1). The distribution function F_x is taken continuous from the right.

THEOREM 1. Suppose $u \leq v$ on the boundary. If $\alpha(x)F_x(x) < 1$ at each $x \in S^*$, then $Tu \leq Tv$ on S^* implies $u \leq v$.

Proof. Suppose $\sup_{x} [u(x) - v(x)] = m > 0$, with m necessarily finite. Then there is a largest value of x, say x_0 , such that u - v = m at x_0 ; moreover, $x_0 < b$, since $u \le v$ on the boundary. To the right of x_0 we have u - v < m, at

Received 5 May 1965.

¹ Research was supported in part by a grant from the Ford Foundation, and in part by the Office of Naval Research (Contract 233(75)).