A UNIFORM ERGODIC THEOREM¹

By George Burke

State University of Iowa

1. Introduction. Let $\{X_n\}$ be a sequence of independent random variables with common distribution function F(t), and let $F_n(t, \omega)$ be the *n*th empirical distribution function of the sequence. Then the Glivenko-Cantelli theorem ([3], p. 20), states that for almost all ω , $F_n(t, \omega)$ converges to F(t) uniformly in t. In [4], Tucker has shown that even if $\{X_n\}$ is only strictly stationary $F_n(t, \omega)$ is still uniformly convergent for almost all ω , the limit being $F(t, \omega | \mathcal{G})$, the conditional distribution function of X_1 given \mathcal{G} , the invariant field of the sequence. Another generalization of the Glivenko-Cantelli theorem was accomplished by Fisz [2], who noted that for each fixed n, $F_n(t, \omega)$ could be looked upon as a non-decreasing stochastic process and for each fixed t the sequence of arithmetic means derived from a sequence of independent random variables.

Looking at Tucker's theorem in this light, we could rephrase it as follows. Let X be a random variable, let $X(t) = I_{\{X \le t\}}$, and let T be a measure preserving set transformation. Choose $X_k(t) = T^k(X(t))$ in such a way that for each $k, X_k(t)$ is non-decreasing and right continuous. Then for almost all ω , $n^{-1} \sum_{k=1}^{n} X_k(t, \omega)$ converges uniformly in t. It is our purpose in this paper to show that this result remains true whenever X(t) is any non-decreasing, right continuous process with E(X(t)) bounded. The proof is based on a general criterion for uniform convergence of a sequence of monotone processes and some results on conditional expectations which may prove of interest in themselves.

2. Conditional expectations for non-decreasing right continuous processes. Let $X(t, \omega)$ be a non-decreasing, right continuous process where t ranges over all real numbers. Let Y be an extended real valued function defined on our probability space Ω . We define

$$X(Y)(\omega) = X(Y(\omega), \omega).$$

For each real a, we define

$$Y_a(\omega) = \inf \{t: X(t, \omega) \ge a\}.$$

The following result is then easily seen.

THEOREM 1. For each real a and t, $\{Y_a > t\} = \{X(t) < a\}$ and $\{X(Y) < a\} = \{Y < Y_a\}$.

In view of Theorem 1 it is obvious that Y_a is always $\mathfrak{F}(X(t)) := \infty < t < \infty$)-measurable, and that X(Y) is always measurable whenever Y is measurable.

Received 23 March 1965.

¹ This paper is part of a Ph.D. dissertation written at the University of Missouri under the direction of H. D. Brunk.