A FAMILY OF COMBINATORIAL IDENTITIES

By LAWRENCE H. HARPER

The Rockefeller Institute

Given an ordered *n*-tuple of real numbers, (x_1, x_2, \dots, x_n) , let σ denote any cyclic permutation of these numbers. If $\sigma = (y_1, \dots, y_n)$ then σ_j denotes the ordered *n*-tuple defined by $\sigma_j = (y_j, y_{j-1}, \dots, y_1, y_n, y_{n-1}, \dots, y_{j+1})$. In particular, if $\sigma = (y_1, \dots, y_n)$, then $\sigma_n = (y_n, \dots, y_1)$. Note that $(\sigma_j)_j = \sigma$, so that the operation is 1-1 and onto.

Now we make the following definition which extends the notation used by R. L. Graham in [3].

DEFINITION 1. $M_{rj}(z_1, \dots, z_n)$ and $m_{rj}(z_1, \dots, z_n)$ denote the rth largest and the rth smallest, respectively, among the first j partial sums $z_1, z_1 + z_2, \dots, z_1 + \dots + z_j$ for $1 \le r \le j \le n$. Note that $M_{rj} = m_{j-r+1,j}$.

DEFINITION 2. If x is a real number, then

$$x^+ = x \qquad \text{if} \quad x \ge 0$$
$$= 0 \qquad \text{if} \quad x < 0$$

and

$$x^- = 0$$
 if $x \ge 0$
= x if $x < 0$.

Note that $x = x^+ + x^-$.

THEOREM.

(1)
$$\sum_{\sigma} [M_{rj}^{+}(\sigma) + m_{rj}^{-}(\sigma_{n})] = (j - r + 1)s_{n}$$

where the sum is taken over all cyclic permutations of (x_1, \dots, x_n) , a total of n, and $s_n = x_1 + \dots + x_n$.

This formula, the main result of the note, is a generalization of a combinatorial theorem on partial sums by R. L. Graham [3], which appears here as Corollary 2. Graham had generalized a result of M. Dwass [1] and our extension includes another formula of Dwass' from the same paper, here Corollary 1.

PROOF. The proof is based upon two identities:

(2)
$$M_{rj}^{+}(\sigma) + m_{rj}^{-}(\sigma_{j}) = M_{r-1,j-1}^{+}(\sigma) + m_{r-1,j-1}^{-}(\sigma_{j})$$

and

(3)
$$M_{1j}^+(\sigma) + m_{1j}^-(\sigma_j) = s_j,$$

where $\sigma = (y_1, \dots, y_n)$ and $s_j = y_1 + \dots + y_j$ for $1 \le r \le j \le n$. The intuitive idea behind these identities is a geometrical one, a variant of the reflection prin-

Received 19 April 1965; revised 10 November 1965.