BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC¹

By M. RAY MICKEY AND MORTON B. BROWN

University of California, Los Angeles

1. Introduction. It is commonly accepted in the case of two independently distributed normal variables that the distribution function of the Behrens-Fisher statistic is bounded, for all values of the variance ratio σ_1^2/σ_2^2 , by the distribution functions of the Student-t variates with $(n_1 + n_2 - 2)$ and min $(n_1 - 1, n_2 - 1)$ degrees of freedom (df). By the Behrens-Fisher statistic we mean

$$V = [\bar{x}_1 - \bar{x}_2 - (\mu_1 - \mu_2)]/(s_1^2/n_1 + s_2^2/n_2)^{\frac{1}{2}}$$

where x_{11} , \cdots , x_{1i} , \cdots , x_{1n_1} and x_{21} , \cdots , x_{2j} , \cdots , x_{2n_2} are samples from the two independent Gaussian distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively and

$$ar{x}_i = \sum_j x_{ij}/n_i$$
;
 $s_i^2 = \sum_j (x_{ij} - \bar{x}_i)^2/(n_i - 1)$.

The purpose of this note is to supply an analytical proof of the above proposition. This result has certain implications. If a critical value for the Behrens-Fisher statistic is specified that is constant for all ratios of the observed sample variances, then it should lie between those of the Student-t variates with $(n_1 + n_2 - 2)$ df and with min $(n_1 - 1, n_2 - 1)$ df at the desired level of significance. In the "equivalent degrees of freedom" approaches, it is reasonable that $(n_1 + n_2 - 2)$ and min $(n_1 - 1, n_2 - 1)$ be bounds on the number of degrees of freedom with which to enter the Student-t table; also we may then put limits on the tail probability. However a constant critical value is not desirable in this problem and effective use of prior knowledge may yield critical values which are not bounded by those of the Student-t variate with $(n_1 + n_2 - 2)$ and min $(n_1 - 1, n_2 - 1)$ df [1].

2. Development. A formal statement of the basic proposition is as follows: Theorem. Let X be normally distributed with zero mean and unit variance, and let f_1W_1 and f_2W_2 be distributed as chi-square variates with f_1 and f_2 degrees of freedom (df) respectively, such that X, W_1 , and W_2 are mutually independently distributed. Then for all γ in the interval $0 \le \gamma \le 1$,

$$(1) P\{|T_1| < v\} \le P\{|V_\gamma| < v\} \le P\{|T_2| < v\}$$

where

$$V_{\gamma} = X/(\gamma W_1 + (1 - \gamma)W_2)^{\frac{1}{2}}$$

Received 21 October 1965; revised 7 January 1966.

¹ Research supported in part by National Institutes of Health Grant No. FR-3.