BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE p-POINT OF A DISTRIBUTION FUNCTION, III¹

By R. H. FARRELL

Cornell University

1. Introduction. Let $0 . A number <math>\gamma_{p,p}$ is a p-point of the distribution function F if $F(\gamma_{p,F}) \geq p$ and $F(\gamma_{p,F}) \leq p$. Given L > 0 and $0 < \alpha < 1$, a L- α bounded length confidence interval procedure operates successfully for Fmeans that when sampling stops an interval of length not exceeding L is given which covers $\gamma_{p,F}$ with probability at least $1-\alpha$. It is the purpose of this paper to give the construction of two L- α bounded length confidence interval procedures which operate successfully for all F ε F. F will be the set of all distribution functions F such that $\epsilon_F > 0$. ϵ_F is defined below in (1.10).

Throughout we let $\{X_n, n \geq 1\}$ be a sequence of independently and identically distributed random variables such that F is the distribution function of X_1 . As we allow different choices of F, we indicate the choice when computing expectations by use of "F" as a subscript.

The procedures constructed are measurable functions of the random variables $\{X_n, n \geq 1\}$. Two sets of functions $\{u_{i,n}, n \geq 1\}$ and $\{v_{i,n}, n \geq 1\}$, i = 1, 2,are constructed. Properties of the procedures are as follows:

- If i = 1, 2 and if $n \ge 1$ then $u_{i,n}$ and $v_{i,n}$ are real valued Borel measurable functions defined on Euclidean n-space, and $u_{i,n}(x_1, \dots, x_n) \leq$ $v_{i,n}(x_1, \dots, x_n)$ for all (x_1, \dots, x_n) in n-space.
- If i = 1, 2 and if $n \ge 1$ let random variables be defined by $U_{i,n} =$ $u_{i,n}(X_1, \dots, X_n)$ and $V_{i,n} = v_{i,n}(X_1, \dots, X_n)$. There exist real numbers α and β such that $0 < \alpha < 1$ and $0 < \beta < 1$ and such that if $F \in \mathbf{F}$ then

$$P_F(\text{all } n \ge 1, U_{i,n} \le \gamma_{p,F}) \ge 1 - \beta;$$

 $P_F(\text{all } n \ge 1, V_{i,n} \ge \gamma_{p,F}) \ge 1 - \alpha.$

istribution function and
$$\gamma_{p,F}$$
 is the unique p-point of

(1.3)If F is a distribution function and $\gamma_{p,F}$ is the unique p-point of F then if i = 1, 2,

$$P_{F}(\lim_{n\to\infty} (V_{i,n} - U_{i,n}) = 0) = 1.$$

If $f: (-\infty, \infty) \to (-\infty, \infty)$ is strictly increasing, then for i = 1, 2, $n \geq 1$, and all x_1, \dots, x_n ,

$$u_{i,n}(f(x_1), \dots, f(x_n)) = f(u_{i,n}(x_1, \dots, x_n));$$

Received 3 September 1965.

¹ Research sponsored in part by the Office of Naval Research under Contract Nonr 401(50) with Cornell University. Part of this work appears in the author's Ph.D. dissertation, University of Illinois.