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1. Introduction. The use of multistage sampling procedures has been of great
value in providing a solution to the problem of estimating a parameter with a
prescribed precision. There are several two-stage methods available so that
either (A) the estimate of a parameter has a specified variance, or (B) a (1 — «)
confidence interval placed on a parameter has a specified width. Of the methods
available that provide a solution to (A) or (B), the techniques of Birnbaum and
Healy [2] (henceforth called BH), Stein [11], and Graybill [6] appear easiest to
apply. The purpose of this paper is to present a general result that holds under
certain conditions for obtaining the expected sample size in Graybill’s method
and to compare results where feasible with the techniques of Stein and BH. A
review of Graybill’s theorem is given. Brief explanations of the applications of
the three methods are presented when estimating the mean or the variance from
a normal population.

2. The expected sample size using Graybill’s method. Suppose w is the width
of a confidence interval on a parameter ¢ with confidence coefficient 1 — a.
Suppose further that it is desired that the probability that w be less than d lie
between 82 and 28 — (2. The problem is to determine k&, the number of observa-
tions, on which to base w.

The Graybill [6] technique will be described for a two-stage procedure. The
first stage yields a random variable z from which is determined a sample size k
on which to base the confidence interval of random width w. Suppose that the
distribution of w depends on k and an unknown parameter 6 (§ may be the
parameter £). Suppose also there exists a function g such that the distribution of
Y = g(w; 6, k) depends only on k (and not on the unknown parameter) and ¢
is monotonic increasing in w for every k and 6. Then a function f(k) may be ob-
tained so that P[Y < f(k)] = 8; 0 < 8 < 1. Let the solution for g(w; 0, k) =
f(k) for w be w = h(8, k) such that h(6, k) is monotonic increasing for every k
and monotonic decreasing in k for every 9.

Let n be defined as a random variable such that h(t(z), n) = d; consequently
k is the smallest positive integer such that £ = =n and h(¢(z), k) = d. Then the
following inequality is true:

£ <Pwsd <2846
At this point an expression for E(k) shall be presented.
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