LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARACTERISTIC FUNCTIONS¹

By R. P. Boas, Jr.

Northwestern University

1. I shall establish some theorems connecting the asymptotic behavior of a distribution function F and the local behavior of its characteristic function φ .

THEOREM 1. If $0 < \gamma < 1$, we have $\varphi \in \text{Lip } \gamma$ if and only if

$$(1.1) F(x) - F(\pm \infty) = O(|x|^{-\gamma}), |x| \to \infty.$$

Condition (1.1) is to be read as $F(x) = O(|x|^{-\gamma})$ as $x \to -\infty$ and $1 - F(x) = O(x^{-\gamma})$ as $x \to +\infty$.

More precisely, $\varphi(x) - \varphi(0) = O(|x|^{\gamma})$, or even $\varphi(x) + \varphi(-x) - 2\varphi(0) = O(|x|^{\gamma})$, implies (1.1); $\varphi \in \text{Lip } \gamma$ is implied by (1.1). Hence if a characteristic function satisfies a Lipschitz condition of order γ , $0 < \gamma < 1$, at the origin, then it satisfies a Lipschitz condition of the same order at all points.

Theorem 1 fails for $\gamma=1$. The problem of finding something similar for $\gamma=1$ is of special interest because it is connected with the problem of the existence of the derivative of a characteristic function at the origin. Let Λ^* and λ^* be the classes of continuous functions φ such that $\varphi(x+h)+\varphi(x-h)-2\varphi(x)=O(h)$ or o(h), uniformly in x, as $h\to 0$ (λ^* is the class of smooth functions); Λ or λ at x means the same thing for this particular x.

THEOREM 2. We have $\varphi \in \Lambda^*$ or λ^* if and only if

(1.2)
$$F(x) - F(\pm \infty) = O(1/|x|) \quad \text{or} \quad o(1/|x|), \qquad |x| \to \infty.$$

More precisely, $\varphi \in \Lambda$ or λ at 0 implies (1.2); $\varphi \in \Lambda^*$ or λ^* is implied by (1.2). Hence in particular $\varphi \in \lambda^*$ if and only if φ is smooth at 0.

Zygmund [3] showed that $\varphi'(0)$ exists if and only if φ is smooth at 0 and

(1.3)
$$\lim_{T\to\infty} \int_{-T}^{T} t \, dF(t) \quad \text{exists.}$$

Pitman [2] showed that $\varphi'(0)$ exists if and only if $F(x) - F(\pm \infty) = o(1/|x|)$ and (1.3) holds. By Theorem 2, we have φ smooth (either at 0 or everywhere) if and only if $F(x) - F(\pm \infty) = o(1/|x|)$, so that the corresponding parts of Zygmund's and Pitman's conditions are really equivalent. In Section 4 I give a short deduction of Pitman's theorem from Theorem 2. (For another proof see Feller [1], p. 528.)

If φ is smooth we can also show that $\varphi'(x)$ exists (for a particular x) if and only if

$$\lim_{T\to\infty}\int_{-T}^T t e^{ixt} dF(t)$$

exists.

Theorems 1 and 2 say that $\varphi(x+h) \to \varphi(x)$ with a specified rapidity if and

Received 4 April 1966.

¹ Supported by National Science Foundation Grant GP-3940.