ON STATIONARY MARKOV PROCESSES1

By RICHARD ISAAC

Hunter College

1. Introduction. Consider Markov processes $(X_n, n \ge 0)$ with given stationary transition probabilities and $(\sigma$ -finite) stationary measure α . The state space Ω is arbitrary; Σ is a σ -field of measurable subsets of Ω . First, we prove that the strictly stationary process $(X_n, n \ge 0)$ is embeddable in a strictly stationary Markov process $(X_n, -\infty < n < \infty)$ which we call the extended process (see [5]). This was a fact assumed true in [5], but no proof was given. We also examine the invariant random variables for these processes in Theorem 2. Also briefly discussed is the reversed Markov process. In the event that Ω is the real or complex field, Theorem 1 is known ([1], p. 456) and if α is finite Theorem 2 is known ([1], pp. 458–460). However, counterexamples are offered illustrating the difficulties arising when α is infinite.

This note is a sequel to [5]. Besides the gap there mentioned above, the language of [5] suggested that Theorem 2 is true in general, i.e., without condition (A). Section 4 of this note will set matters straight.

2. Main results.

LEMMA. Let Σ be separable, that is, Σ is generated by a countable family of sets. Then the strictly stationary Markov process $(X_n, n \geq 0)$ may be embedded in an extended process $(X_n, -\infty < n < \infty)$.

Proof. Consider bilateral sequence space Ω_1 with elements $\omega = (\cdots \omega_{-1}, \omega_0, \omega_1, \cdots)$. Let Λ_0 and $_0\Lambda$ be the σ -fields generated by cylinders in Ω_1 with non-negative coordinates and non-positive coordinates respectively. Using the transition probabilities, for each x a conditional probability measure $P(\cdot \mid X_0 = x)$ may be constructed on Λ_0 according to [1], p. 614. With α as initial measure on X_0 -space, it is easily seen that a shift-invariant measure α_0 may be defined on Λ_0 by putting $\alpha_0(U) = \int P(U \mid X_0 = x)\alpha(dx)$ for $U \in \Lambda_0$ (see Lemma 1 of [5]). Proceed as in [1], p. 456, to assign a mass α_1 to cylinder sets in Ω_1 by setting $\alpha_1(C) = \alpha_0(T^{-j}C)$ where $T^{-j}C \in \Lambda_0$, T is the shift, and C is a cylinder of Ω_1 . To prove that α_1 determines a measure on the σ -field Σ_1 of Ω_1 determined by the cylinder sets (and hence that $(X_n, n \ge 0)$ is embedded in $(X_n, -\infty < n < \infty)$) it is necessary to prove α_1 countably additive on the cylinders.

Kolmogorov's extension theorem fails because Ω here is arbitrary. It is already known that α_1 restricted to Λ_0 is countably additive and equal to α_0 . Now we check α_1 restricted to Λ_0 is countably additive. To see this, observe that since X_0 , X_1 , \cdots is a Markov process with initial distribution α , the process $\cdots X_n$, X_{n-1} , \cdots , X_0 is also Markovian (see [1], p. 83; the restriction to real

Received 21 January 1966; revised 26 August 1966.

¹ Supported in part by NSF Grant GP-3819.