THE GENERALIZED VARIANCE: TESTING AND RANKING PROBLEM!

By Morris L. Earon
Unaversity of Chicago

In this note it is shown that, for a sample from a multivariate normal dis-
tribution, the density function of the sample generalized variance possesses a
monotone likelihood ratio (MLR). This result is used to construct a uniformly
most powerful invariant test for a testing problem concerning the population
generalized variance. Also, the result is applied to the problem of ranking multi-
variate normal populations according to the size of their generalized variances.

Let Xy, -+, Xat1 be a random sample from a p(p = n) variate normal dis-
tribution N,(u, Z), with mean p and nonsingular covariance matrix =. Consider
the sufficient statistic (X, S) where

(1) X=QU/m+1) X
and
(2) S = g‘-:ll Xi/X'i — (n + I)X’X,

so that X and S are independent, X is N,(g, 1/(n + 1)Z) and S has a Wishart
distribution, W,(Z, n), with expectation nZ. If we set § = det (£) and
V = det (8), then 6(V, resp.) is the population (sample, resp.) generalized
variance. It is well known that V has the same distribution as 8 [ [?= x»—:1 where
the factors xa—sp1 are independent and have a chi-square distribution with
n — 7 + 1 degrees of freedom (see Anderson (1958) p. 171). Let fp(v, 6) denote
density function of V.

LeMMA 1. The density function, fp(v, 0), of the generalized variance has a MLR.

Proor. The proof is by induction on p(1 = p = n). For p = 1, V has the density
of a scaled chi-square random variable which is known to have a MLR. Now, it
is straightforward to show that

(3) fo(,8) = [T fpu(v, 2)(x, 6) dv

where & is the density of a scaled x5_p1 random variable. Noting that h(z, 6)
has a MLR, the result now follows by the induction hypothesis and an application
of a result due to Karlin (1956, Lemma 5, p. 125). []

As an application of the above lemma, consider the hypothesis Hq¢:0 < ¢; and
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