ABSTRACTS

(Abstracts of paper presented at the Central Regional meeting, Columbus, Ohio, March 23-25, 1967. Additional abstracts appeared in earlier issues.)

34. Generalized multivariate estimators for the mean of a finite population.

Poduri S. R. S. Rao, Information Research Associates, Inc. (Invited)

Just as the ratio estimators are often indicated when the variable y is positively correlated with an auxiliary variable x, so product estimators are indicated when y is negatively correlated with x. For estimating \bar{Y} the following product estimators are considered: $\bar{Y}_1^* = \sum x_i y_i / n\bar{x}$; $\bar{Y}_2^* = \bar{x}\bar{y}/\bar{X}$; $\bar{Y}_3^* = \bar{x}\bar{y}/\bar{X} - (N-n)s_{xy}/Nn\bar{X}$. \bar{Y}_1^* is not a consistent estimator, \bar{Y}_2^* is a biased estimator, and \bar{Y}_3^* is an unbiased estimator. The mean square errors of these estimators are compared when the relation between y and x is of the forms $y = \alpha + \beta x + e$ and $y = \alpha + \beta/x + e$ and when x has a gamma distribution. Similar to the multivariate ratio estimator of Olkin [Biometrika 45 (1958), 154–165], multivariate product estimators are formed analogous to the above three estimators and their biases and variances are found. Finally when x_1, \dots, x_p are positively correlated and $x_{p+1}, \dots x_q$ are negatively correlated with y, multivariate estimators for \bar{Y} are found and their biases and variances are evaluated. In particular an unbiased multivariate estimator for \bar{Y} is $\tilde{Y} = \tilde{Y}_1 + \tilde{Y}_2$ where

$$\begin{split} \tilde{Y}_1 &= \sum W_j r_j \bar{X}_j + [(N-1)n/N(n-1)](\bar{y} - \sum W_j \bar{r}_j \bar{x}_j), \\ \tilde{Y}_2 &= \sum [W_j/\bar{X}_j][\bar{x}_j \bar{y} - (N-n)(P_j - n\bar{x}_j \bar{y})/Nn(n-1)] \end{split}$$

with $r_j = y_i/x_{ji}$, $n\bar{r}_j = \sum_i (y_i/x_{ji})$, $P_i = \sum_i x_{ji}y_i$. The optimum weights \hat{W}_j are determined by minimizing $V(\tilde{Y})$. (Received 10 April 1967.)

35. The asymptotic distribution of class of two-sample non-linear rank order statistics in the null case. Siegfried Schach, University of Minnesota. (Invited)

Let X_1 , X_2 , \cdots , X_m and Y_1 , Y_2 , \cdots , Y_n be two independent samples from the same continuous distribution. Let $h_N(\cdot)$, $N=1,2,\cdots$ be a sequence of functions on [-1,1], symmetric with respect to 0, and periodic with period 1, and let R_1 , R_2 , \cdots , R_m be the ranks of the X-observations in the combined sample. We find conditions under which a sequence of statistics of the form $T_N=N^{-1}\sum_{i=1}^m\sum_{j=1}^mh_N$ (R_i-R_j) N^{-1} converges in distribution as N=m+n goes to infinity, and we derive the characteristic function of the limiting distribution. If h_N converges to some h with a finite Fourier expansion, the limiting distribution is obtained by writing T_N as a quadratic form in variables $z_i^{(N)}$, where $z_i^{(N)}=1$ if the ith observation in the ordered combined sample is an X, 0 otherwise, and by diagonalizing the matrix of the quadratic form. Hájek's theorem is used to obtain the limiting distribution of T_N . It is a finite weighted sum of χ^2 -variables. If h has an infinite Fourier expansion with an absolutely converging Fourier series, T_N can be represented as a function on the Hilbert H space of real sequences with finite sums of squares. Using Prokhorov's techniques, it is shown that the induced measures on H converge weakly to some Gaussian measure and that T_N has the distribution of an infinite weighted sum of χ^2 -variables, where the Fourier coefficients determine the weights. (Received 10 April 1967.)