NOTES ## HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS! BY W. MOLENAAR AND E. A. VAN DER VELDE Mathematisch Centrum, Amsterdam Suppose a gambler with initial capital b_0 wants to maximize his probability of still having a positive capital after n_0 successive independent bets, under two conditions: (a) the minimal stake is one dollar; (b) bets are fair and their probbility of success is at most $\frac{1}{2}$. A bet is determined by the stake c and the odds k: the gambler wins kc - c with probability 1/k and loses c otherwise. If b_{m-1} denotes the gambler's capital after m-1 bets, he must choose for the mth bet c_m $(1 \le c_m \le b_{m-1})$ and k_m $(k_m \ge 2)$. For simplicity of presentation we make the inessential restriction that all b_m , c_m and k_m are integers. In a fair roulette (without zero) k can only be a divisor of 36. A bet c = 1, k = 2 is called conservative. A situation is a pair (n, b) where b is the capital and n the number of bets to go. A strategy for (n_0, b_0) is a rule prescribing which bet should be made in the initial situation (n_0, b_0) and in each situation which may evolve from it. Under the stated conditions there exists for each (n_0, b_0) a (possibly non-unique) optimal strategy which leads to a (unique) maximal probability of survival (pos) denoted by $p(n_0, b_0)$. The independence of bets implies that for n > 1 and $b \ge 1$ $$p(n, b) = \max_{c,k} \{ (1/k)p(n-1, b+kc-c) + (1-1/k)p(n-1, b-c) \}.$$ Theorem 1. The pos q(n, b) for the conservative strategy (i.e. c = 1 and k = 2 in each situation) is for every $n \ge 1$ a concave function of b. PROOF. The theorem holds for n=1 as q(1, 0)=0, $q(1, 1)=\frac{1}{2}$ and q(1, b)=1 for $b\geq 2$. We proceed by induction. The definition of q implies that $$(1) q(n-1,\beta) \ge q(n,\beta)$$ and (2) $$q(n,b) = \frac{1}{2}q(n-1,b+1) + \frac{1}{2}q(n-1,b-1).$$ Substituting (1) with $\beta = b \pm 1$ into (2) we obtain $q(n, \lambda\beta_1 + (1 - \lambda)\beta_2)$ $\geq \lambda q(n, \beta_1) + (1 - \lambda)q(n, \beta_2)$, first for $\lambda = \frac{1}{2}$ and then by well known arguments for all $\lambda \varepsilon$ (0, 1) and all β_1 , β_2 such that both sides of the inequality are defined. Theorem 2. The conservative strategy is optimal for all n_0 and b_0 . Received 5 December 1966. ¹ Report S 374 (Sp 101), Statistische Afdeling, Mathematisch Centrum, Amsterdam.