AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOGOROV-SMIRNOV TYPE

By Georges Vandewiele and Marc Noé

Free University of Brussels and M.B.L.E. Research Laboratory, Brussels

1. Introduction. Let $F_n(x)$ be the sumpolygon (empirical distribution function) of a sample of size n from a continuous distribution function F(x). Let K(x), $G_1(x)$, $G_2(x)$, $H_1(x)$, $H_2(x)$ be functions of x, such that for all x,

$$G_1(x) \ge G_2(x); \quad H_2(x) \ge H_1(x).$$

The object of the present paper is to prove the following inequalities

(1)
$$P[\inf_{x} (F_{n} - K) \ge 0 \mid \inf_{x} (G_{1} - F_{n}) \ge 0, \inf_{x} (F_{n} - H_{2}) \ge 0]$$

 $\ge P[\inf_{x} (F_{n} - K) \ge 0 \mid \inf_{x} (G_{2} - F_{n}) \ge 0, \inf_{x} (F_{n} - H_{1}) \ge 0],$

(2)
$$P[\inf_{x} (K - F_n) \ge 0 \mid \inf_{x} (G_1 - F_n) \ge 0, \inf_{x} (F_n - H_2) \ge 0]$$

 $\le P[\inf_{x} (K - F_n) \ge 0 \mid \inf_{x} (G_2 - F_n) \ge 0, \inf_{x} (F_n - H_1) \ge 0],$

where all probabilities are supposed to exist. Since these inequalities are symmetrical, it suffices to prove one of them.

These inequalities provide an approximation for the distribution of two-sided statistics of the Kolmogorov-Smirnov type. Such a distribution is written

$$P\{\sup_{x} n^{\frac{1}{2}} | F_n(x) - F(x) | \psi[F(x)] \le \lambda\}$$

or more generally

(3)
$$P_n = P[\inf_x (G_2 - F_n) \ge 0, \inf_x (F_n - H_2) \ge 0].$$

In order to approximate P_n , take $H_1(x)$ and $H_2(x)$ in (1) smaller than zero for all x and replace K(x) in (1) by $H_2(x)$; similarly take $G_1(x)$ and $G_2(x)$ in (2) larger than 1 for all x and replace K(x) in (2) by $G_1(x)$. One then easily obtains the upper bound

(4)
$$P_n \leq P_n' P[\inf_x (G_2 - F_n) \geq 0] \cdot P[\inf_x (F_n - H_2) \geq 0]$$

 $\cdot \{P[\inf_x (G_1 - F_n) \geq 0] \cdot P[\inf_x (F_n - H_1) \geq 0]\}^{-1}$

where $P_n' = P[\inf_x (G_1 - F_n) \ge 0, \inf_x (F_n - H_1) \ge 0]$. If now G_1 and H_1 are chosen close to G_2 resp. H_2 , but such that P_n' is more easily calculable than P_n , then (4) provides an interesting approximation of (3). A lower bound can be found in a similar way.

Wald and Wolfowitz [3] and [4] have given the following two bounds for P_n

(5)
$$P_n \leq P[\inf_x (G_2 - F_n) \geq 0] \cdot P[\inf_x (F_n - H_2) \geq 0],$$

$$P_n \geq P[\inf_x (G_2 - F_n) \geq 0] + P[\inf_x (F_n - H_2) \geq 0] - 1.$$

Received 27 December 1966; revised 23 February 1967.