EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE RADON-NIKODYM DERIVATIVE¹

BY DALE E. VARBERG

Hamline University

1. Introduction. We consider two Gaussian probability measures P_{ρ} and P_{r} determined by covariance functions $\rho(s, t)$ and r(s, t) respectively (the mean functions will be assumed to vanish). The well known Feldman-Hájek theorem asserts that P_{ρ} and P_{r} are either equivalent or perpendicular. If they are equivalent, the Radon-Nikodym derivative $(dP_{\rho}/dP_{r})(x)$ exists and is the exponential of a quadratic form in x. This quadratic form may be diagonal, i.e., expressible as $\int_{a}^{b} f(t)x^{2}(t) dt$. If P_{r} is Wiener measure, L. A. Shepp [4], p. 352, has shown precisely when this happens. His method allows him to calculate $E\{\exp\left[-\frac{1}{2}\int_{0}^{T} f(t)x^{2}(t) dt\right]\}$ and this in turn permits him to prove an interesting zero-one law for the Wiener process. The purpose of this paper is to extend these results to an arbitrary Gaussian process.

We will use r(s, t) consistently to denote a *continuous* covariance function defined on $[a, b] \times [a, b]$. For $f(t) \ge 0$, we let $K(s, t) = [f(s)f(t)]^{\frac{1}{2}}r(s, t)$ which is then a positive (semi-definite) kernel and hence has nonnegative characteristic values [3], p. 237. Let λ_1 be the largest of these values. Finally, let $D(\lambda)$ and $K_{\lambda}(s, t)$ be the Fredholm determinant [3], p. 173, and resolvent kernel [3], pp. 151–158, corresponding to K.

Theorem 1. Let f(t) be nonnegative, bounded and measurable on [a, b], and let r(s, t), $D(\lambda)$ and λ_1 be as above. If $\lambda < 1/\lambda_1$, then

$$E^{r}\{\exp \left[\frac{1}{2}\lambda \int_{a}^{b} f(t)x^{2}(t) dt\right]\} = [D(\lambda)]^{-\frac{1}{2}}.$$

Here $E'\{\cdots\}$ denotes expectation on the Gaussian process with covariance function r.

THEOREM 2. Let f(t) be positive and continuous on [a, b] and let r(s, t), $D(\lambda)$, $K_{\lambda}(s, t)$ and λ_1 be as above. If $\lambda < 1/\lambda_1$ and if we let $\rho_{\lambda}(s, t) = K_{\lambda}(s, t)/[f(s)f(t)]^{\frac{1}{2}}$, then $\rho_{\lambda}(s, t)$ is a covariance function, $P_{\rho_{\lambda}}$ is equivalent to P_r and

(1.1)
$$(dP_{\rho_{\lambda}}/dP_{r})(x) = [D(\lambda)]^{\frac{1}{2}} \exp\left[\frac{1}{2}\lambda \int_{a}^{b} f(t)x^{2}(t) dt\right].$$

Theorem 3 (zero-one law). Let f(t) be measurable on [a, b] and let r(s, t) be as above. The set of x's for which $f(t)x^2(t) \in L^1(a, b)$ is either of probability $(P_r$ measure) one or zero, and these alternatives occur according as f(t)r(t, t) is or is not in $L^1(a, b)$.

If r is the covariance function of a stationary Gaussian process (i.e., r(s, t) = p(|s-t|)) so that r(t, t) is a positive constant, we have the particularly simple

Received 18 July 1966.

¹ This research was sponsored by the U. S. Air Force Office of Scientific Research, Office of Aerospace Research, under Grant No. AF-AFOSR 35-65.