A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS

By L. A. Shepp

Bell Telephone Laboratories, Incorporated

We study the stopping time $T = T_{a,c}$, the first time the Wiener process W(t), $0 \le t < \infty$ crosses the curve $\pm c(t+a)^{\frac{1}{2}}$, a > 0, c > 0. In an analogous discrete time problem the moments of T were studied in Blackwell-Freedman (1964), Chow-Robbins-Teicher (1965), and Chow-Teicher (1966). Results obtained showed that for the discrete problem $ET < \infty$ if and only if c < 1, and $ET^2 < \infty$ if and only if $c < (3 - 6^{\frac{1}{2}})^{\frac{1}{2}}$. We show that these statements are also valid in our case and find the generalization: $ET^n < \infty$ if and only if c is less than the first positive zero of the Hermite polynomial He_{2n} . We conjecture that the same result holds also in the original discrete case. (Note that $(3 - 6^{\frac{1}{2}})^{\frac{1}{2}}$ is the first zero of He_4 .) We also give explicit formulas for the moments of T. Our method is based on the Wald identity for the Wiener process: $E \exp(-\lambda^2 T/2 + \lambda W(T)) = 1$.

We show that any stopping time T with $ET < \infty$ satisfies EW(T) = 0 and $EW^2(T) = ET$. These identities will be derived as a consequence of the basic properties of the Ito stochastic integral.

1. Stopping times and Ito integrals. Let $W(t, \omega)$, $0 \le t < \infty$, $\omega \in \Omega$ be a Wiener process with continuous paths. A finite nonnegative rv $T(\omega)$ is called a stopping time if $\{T \le t\}$ $\varepsilon \in \{W(s): s \le t\}$, $0 \le t < \infty$. For such a $T \operatorname{let} \varphi_T(t, \omega) = 1$ for $t \le T(\omega)$, $\varphi_T(t, \omega) = 0$ for $t > T(\omega)$.

LEMMA 1. The Ito integral $I(\varphi_T)(\omega) = \int_0^\infty \varphi_T(t, \omega) \ dW(t)$ is defined and $I(\varphi_T) = W(T)$ a.s.

Proof. According to K. Ito (1951), we must show that φ_T is measurable in $t \times \omega$, is nonanticipative, and satisfies $\int_0^\infty \varphi^2(t,\omega) dt < \infty$ a.s. Let $T_n = k/2^n$ on $\{(k-1)/2^n \le T < k/2^n\}$. It is easy to check that T_n is both measurable and nonanticipative and that $\varphi_{T_n} \to \varphi_T$ at each (t,ω) . Since $T(\omega) = \int_0^\infty \varphi^2(t,\omega) dt$ and $T(\omega) < \infty$ a.s. because T is a stopping time, we have checked that $I(\varphi_T)$ is defined. That $I(\varphi_T) = W(T)$ is a consequence of the definition of the Ito integral and the continuity of Wiener paths.

Theorem 1. Let T be any stopping time with $ET < \infty$. Then EW(T) = 0 and $EW^2(T) = ET$.

PROOF. The mean of an Ito integral with finite variance is zero (Ito (1951)). The variance of $I(\varphi_T) = W(T)$ is given by Ito's formula $\int_0^\infty E\varphi_T^2(t, \omega) dt = \int_0^\infty P\{T \ge t\} dt = ET$. This proves both assertions.

Caution. It is possible that $ET = \infty$ and $EW^2(T) < \infty$ as the example T = time of crossing level one shows.

The result for discrete time corresponding to Theorem 1 has been proved in great generality by martingale methods [3].

Received 19 June 1967.