## CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE DIFFERENCES<sup>1</sup>

By Y. S. Chow

Purdue University

1. Introduction and notation. Let  $(\Omega, \mathfrak{F}, P)$  be a probability space. A stochastic basis  $(\mathfrak{F}_n, n \geq 1)$  is a monotonically increasing sequence of  $\sigma$ -fields of measurable sets. A stochastic sequence  $(y_n, \mathfrak{F}_n, n \geq 1)$  consists of a stochastic basis  $(\mathfrak{F}_n, n \geq 1)$  and a sequence of random variables  $(y_n, n \geq 1)$  such that  $y_n$  is  $\mathfrak{F}_n$ -measurable. For a stochastic sequence  $(x_n, \mathfrak{F}_n, n \geq 1)$ , we put (here as well as in following sections)

$$x_0 = 0, \, \mathfrak{F}_0 = \{\Phi, \, \Omega\}, \, d_n = x_n - x_{n-1} \quad \text{for} \quad n \geq 1, \, s_n = \left(\sum_{k=1}^n d_k^2\right)^{\frac{1}{2}},$$
  
 $x^* = \sup_{n \geq 1} |x_n|, \, d^* = \sup_{n \geq 1} |d_n|, \, s = \lim_{n \to \infty} s_n,$ 

and  $I_A$  = indicator function of set A. If  $(x_n, \mathfrak{F}_n, n \geq 1)$  is a martingale, then  $(d_n, \mathfrak{F}_n, n \geq 1)$  is called a martingale difference sequence. For a given stochastic basis  $(\mathfrak{F}_n, n \geq 1)$ , a stopping time t is an extended positive integral valued measurable function such that  $[t = n] \varepsilon \mathfrak{F}_n$  for each n. For a stopping time t and a measurable function y,  $E_t y$  is defined as  $\int_{[t < \infty]} y \ dP$  (or  $\int_{[t < \infty]} y$ , in short), if it exists.

Let  $(x_n, \mathfrak{F}_n, n \geq 1)$  be a martingale. Austin [1] recently proves that if  $\sup_{n\geq 1} E|x_n| < \infty$ ,  $s < \infty$  a.e.; also Burkholder [2] proves that if  $Es < \infty$   $x_n$  converges a.e. and that if  $\sup_{n\geq 1} E|x_n| < \infty$ , then  $\sum_{k=1}^{\infty} \varphi_k d_k$  converges a.e. for every stochastic sequence  $(\varphi_k, \mathfrak{F}_{k-1}, n \geq 1)$  for which  $\sup_{n\geq 1} |\varphi_n| < \infty$  a.e.; Gundy [8] proves that if  $(d_n, n \geq 1)$  is an orthonormal sequence such that each  $d_n$  assumes at most two non-zero values with positive probability, and if the  $\sigma$ -field generated by  $d_1, \dots, d_n$  consists of exactly n atoms, such that

$$\inf_{n>1} \min(P[d_n>0], P[d_n<0])/P[d_n\neq 0]>0,$$

then for every sequence  $a_n$  of real numbers,  $\sum_{n=1}^{\infty} a_n^2 d_n^2 < \infty$  if and only if  $\sum_{n=1}^{\infty} a_n d_n$  converges.

Let  $(\mathfrak{F}_n, n \geq 1)$  be a stochastic basis. If for each n,  $\mathfrak{F}_n$  is generated by atoms of  $\mathfrak{F}_n$ , then  $(\mathfrak{F}_n, n \geq 1)$  is said to be atomic. For a  $\sigma$ -field  $\mathfrak{F}_n$  of measurable sets and  $A \in \mathfrak{F}$ , a  $\mathfrak{F}$ -measurable cover of A is a set  $C \in \mathfrak{F}$  such that P(A - C) = 0 and that if  $B \in \mathfrak{F}_n$  and P(A - B) = 0, then P(C - B) = 0. For  $A \in \mathfrak{F}$ , let  $C_n(A)$  be the  $\mathfrak{F}_n$ -measurable cover of A. If there exists M > 0 such that  $PC_n(A) \leq MPA$  for every  $A \in \mathfrak{F}_{n+1}$ ,  $n = 1, 2, \cdots$ , then  $(\mathfrak{F}_n, n \geq 1)$  is said to be regular.

Let  $(x_n, \mathfrak{F}_n, n \geq 1)$  be a submartingale and  $E|x_n| < \infty$  for each n. If  $(\mathfrak{F}_n, \mathfrak{F}_n)$ 

Received 3 March 1967; revised 5 September 1967.

www.jstor.org

<sup>&</sup>lt;sup>1</sup> This research was supported by the National Science Foundation under Grant No. GP-06073.