AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES

By C. L. Mallows

Bell Telephone Laboratories, Incorporated

Suppose the random variables $\{X_{ij}, i = 1, \dots, m, j = 1, \dots, n\}$ are independent and identically distributed. Then the event A defined by the inequalities

$$X_{11} + X_{12} + \cdots + X_{1n} \le a_1,$$

 $X_{21} + X_{22} + \cdots + X_{2n} \le a_2,$
 $X_{m1} + X_{m2} + \cdots + X_{mn} \le a_n$

has a certain probability, P(A). If the random variables are constrained to satisfy some conditions of the form $X_{11} = X_{21}$, $X_{23} = X_{63}$ etc. (but not of the form $X_{11} = X_{12}$ etc.), then P(A) is increased. This result was conjectured by E. Arthurs.

THEOREM. If

- (i) $X = \{X_{ij}, i = 1, \dots, m, j = 1, \dots, n\}$ is an array of independent and identically distributed random variables;
 - (ii) A is an event of the form

$$A = \{ \sum_{j=1}^{n} X_{ij} \leq a_i, i = 1, \dots, m \};$$

(iii) C_1 , C_2 are sets of constraints of the form $X_{ij} = X_{i'j}$ with $C_1 \subset C_2$; then

$$P(A \mid C_1) \leq P(A \mid C_2).$$

PROOF. It is sufficient to prove the result in the case that C_1 does not imply $X_{11} = X_{21}$, while $C_2 = C_1 \cup \{X_{11} = X_{21}\}$. Suppose the dimensionality of X conditioned by C_1 is k+2, where $k \ge 0$. We can choose k variables Y_1, Y_2, \cdots, Y_k out of X so that $Y_1, Y_2, \cdots, Y_k, X_{11}, X_{21}$ are linearly independent under C_1 . Then $Y_1, \cdots, Y_k, X_{11}, X_{21}$ are statistically independent, and

$$P(A \mid C_1) = \int_B \prod_{i=1}^k dF(y_i) \int_{-\infty}^{b_1} dF(x_{11}) \int_{-\infty}^{b_2} dF(x_{21})$$

where $F(x) = P(X_{11} \le x)$, B is some region in R^k (which is the range of (y_1, \dots, y_k)), and b_1, b_2 are certain functions of y_1, \dots, y_k derived from the inequalities defining the event A. This is to be compared with

$$P(A \mid C_2) = \int_B \prod_{i=1}^k dF(y_i) \int_{-\infty}^{\min(b_1,b_2)} dF(x).$$

However, for any distribution function F and any b_1 , b_2

$$\int_{-\infty}^{b_1} dF(u) \, \int_{-\infty}^{b_2} dF(v) \, \leqq \, \int_{-\infty}^{\min(b_1,b_2)} dF(x)$$

and the theorem is proved.

Received 18 June 1967.

1080