ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS

By Steven Orey1

University of Minnesota

Let $\varphi(\xi)$ be the characteristic function of an infinitely divisible distribution function F on R_1 . Suppose F has no Gaussian component. Then one has the representation

(1)
$$-\log |\varphi(\xi)| = \int_{-\infty}^{\infty} (1 - \cos \xi x) \nu(dx) = 2 \int_{-\infty}^{\infty} \sin^2 \frac{1}{2} \xi x \nu(dx)$$

where ν is the Levy measure and satisfies

(2)
$$\int_{-\infty}^{\infty} x^2 (1+x^2)^{-1} \nu(dx) < \infty.$$

Continuity properties of F depend on the behavior of ν near the origin. For interesting results and references to previous work see [5]. Related information of a very refined kind is developed in [3].

1. For $0 \le \lambda \le 2$ introduce the condition

$$(C_{\lambda}) \qquad \qquad \int_{-1}^{1} |x|^{\lambda_{\nu}} (dx) = \infty.$$

It is easily seen from (2) above that (C_2) never holds. In [2] it is shown that (C_0) is equivalent to the continuity of F. An example is given in [1] in which (C_0) holds but the corresponding F is not absolutely continuous. This example will be modified to show that for any $\lambda < 2$ (C_{λ}) may hold yet F not be absolutely continuous. It follows that assertion (I) [2], p. 286, and the result given as Corollaries 1–3 of Theorem 2 in [4] are erroneous.

It follows from (1) and the Riemann-Lebesgue lemma that if F is absolutely continuous

(3)
$$\int_{-\infty}^{\infty} \sin^2 \xi x \nu(dx) \to \infty \quad \text{as} \quad |\xi| \to \infty.$$

Let $0 \le \lambda < 2$, and let c be an integer exceeding $2/(2-\lambda)$. Let $a_j = 2^{-c^j}$, $j = 1, 2, \dots$, and let ν be atomic with atoms of weight $a_j^{-\lambda}$ at $x = a_j$, $j = 1, 2, \dots$. Note that ν satisfies (2) and (C_{λ}) . Let $\xi_n = \pi a_n^{-1}$ and observe

$$\int_{-\infty}^{\infty} \sin^2 \xi_n x \nu (dx) = \sum_{j=1}^{\infty} (\sin^2 \pi 2^{(c^n - c^j)}) 2^{\lambda^{c^j}}$$

$$= \sum_{j=n+1}^{\infty} (\sin^2 \pi 2^{(c^n - c^j)}) 2^{\lambda^{c^j}} \le \pi^2 \sum_{j=n+1}^{\infty} 2^{-((2-\lambda)c^j - 2c^n)}$$

and the last term tends to zero with n, so that (3) is violated.

2. Let $H(r) = \int_{|x| < r} |x|^2 \nu(dx)$. Consider the condition

$$(D_{eta})$$
 There exist $c>0$ and $r_0>0$ such that $H(r)>cr^{eta}$ for $0< r< r_0$.

Received December 12, 1967.

¹ This research was partially supported by The National Science Foundation.