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MINIMIZATION OF EIGENVALUES OF A MATRIX AND
OPTIMALITY OF PRINCIPAL COMPONENTS
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1. Introduction. Let ' = (2, @2, ..., z,) be a random vector with mean
vector E(z) = 0 and variance matrix E(xz') = Z. Let M = N = -+ 2\, = 0
be the eigenvalues of = in order of decreasing magnitude, and v;, v, -+ , v, be
the corresponding orthonormal eigenvectors.

The principal components of z, namely », 'z, vz, - -+ , v,z were introduced
by Hotelling [3], and since then characterized by various optimal properties.
Almost all of these optimal properties, however, are stated in terms of linear
functions of &1, 22, - - - , & . For example, Rao [4] characterizes the first k(< p)
principal components as a linear form y = T’z with a p X k matrix 7 which
minimizes the trace or the Euclidean norm of the residual variance matrix of z
after subtracting its best linear predictor based on y. The unique exception is
Darroch [2] who deals with the optimality within the class of all random variables
with at most ¥ dimensions.

The purpose of this paper is to characterize the first k principal components by
a more general optimal property containing those due to Rao or Darroch as
special cases. Lemma 3 in Section 2 dealing with simultaneous minimization of the
eigenvalues of a non-negative definite matrix is of an algebraic character, and
may be interesting by itself.

2. Notation and lemmas. Let @ = @, be the set of all real non-negative defi-
nite matrices of order p. A partial order in the set @ is defined as usual; A = B if
andonlyif A — Be@.Forany A e @let Mi(4) = N(4) = -+ = N (4) be the
eigenvalues of A in order of decreasing magnitude. The following two Lemmas
will be stated without proof.

Lemma 1. A necessary and sufficient condition for a real-valued function f(A)
defined on G to be

() strictly increasing, that is, f(A) = f(B) if A = B, and f(4) > f(B)if
moreover A # B, and

(il) snvariant under orthogonal transformation, that is, f (P’AP) = f(A) for any
orthogonal matriz P,

18 that f(A ) s identical to some function g\ (A), -+, Np(A)) of the eigenvalues
of A which is strictly increasing in each argument.

It is noted that the trace as well as the Euclidean norm of a matrix enjoys this
property of a function f.

Now we denote by M (4) (k = 1,2, ---, p) the linear subspace spanned by
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