A NOTE ON THE WEAK LAW1

BY C. M. DEO AND D. R. TRUAX

University of Oregon

Let $S_n = \sum_{k=1}^n X_k$, where X_k , $k \ge 1$, are independent and identically distributed random variables with characteristic function φ . The object of this note is to prove the following generalization of weak law of large numbers.

Theorem. Let $\alpha \in (\frac{1}{2}, \infty)$. Then, the following are equivalent.

- (i) There exist constants a_n such that $S_n/n^{\alpha} a_n \to {}_{P}0$.
- (ii) $|\log |\varphi(t)||^{\alpha}$ is differentiable at t=0.
- (iii) $\lim_{t\to\infty} tP\{|X_1|>t^{\alpha}\}=0.$

Proof. Note first that any of the conditions (i), (ii), (iii) holds for the sequence $\{X_n\}$ if and only if it holds for the symmetrized sequence $\{\hat{X}_n\}$. This is obvious for (ii). For (i) and (iii) it is an easy consequence of the symmetrization inequalities [1], p. 245. Also, if X_1 is symmetric we can take the centering constants a_n to be zero in (i). Therefore, we shall assume hereafter that X_1 is symmetric and φ is real.

First, we establish the equivalence of (i) and (ii). The logarithm of φ , as usual, is defined in a neighborhood of t=0. We have $S_n/n^{\alpha} \to_P 0 \Leftrightarrow \varphi^n(t/n^{\alpha}) \to 1$, all $t \Leftrightarrow n \log \varphi(t/n^{\alpha}) \to 0$, all $t \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|^{1/\alpha}/n \to 0$, all $t \neq 0 \Leftrightarrow |\log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow |\log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})|^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n^{\alpha}/|t|/n^{\alpha} \to 0$, all $t \neq 0 \Leftrightarrow \log \varphi(t/n^{\alpha})/|t|/n^{\alpha}/|t|/n$

It remains to show that (i) and (iii) are equivalent. We shall essentially follow [2], p. 232. To show (iii) implies (i), let τ_n be the truncation at $\pm n^{\alpha}$. Define $T_n = \sum_{j=1}^n \tau_n(X_j)$. Then (iii) implies that $\lim_{n\to\infty} P(S_n \neq T_n) = 0$, and consequently it is enough to show $T_n/n^{\alpha} \to_P 0$. We have

$$P\{|T_n| > \epsilon n^{\alpha}\} \le E|T_n|^2 \epsilon^{-2} n^{-(2\alpha)} = \epsilon^{-2} n^{-(2\alpha-1)} \int_0^n t^{2\alpha} dG(t)$$
$$\le 2\alpha \epsilon^{-2} n^{-(2\alpha-1)} \int_0^n t^{2\alpha-1} [1 - G(t)] dt,$$

where $G(t) = P\{|X_1|^{1/\alpha} \le t\}$. By (iii) $\lim_{t\to\infty} t[1 - G(t)] = 0$, and this is easily seen to imply that the right hand expression has limit zero for each $\epsilon > 0$. (i) implies (iii) because

$$P\{|S_n| > n^{\alpha}\} \ge \frac{1}{2} P\{\max_{1 \le j \le n} |S_j| > n^{\alpha}\}$$

$$= \frac{1}{2} (1 - P\{\max_{1 \le j \le n} |S_j| \le n^{\alpha}\})$$

$$\ge \frac{1}{2} (1 - P\{\max_{1 \le j \le n} |X_j| \le 2n^{\alpha}\})$$

$$\ge \frac{1}{2} (1 - \exp(-n P\{|X_1| > 2n^{\alpha}\})).$$

This completes the proof of the theorem.

Received 30 July 1968.

¹ This research was sponsored by NSF Grant GP 4865.