A GENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC THEOREM

By Choo-Whan Kim

Simon Fraser University

1. Introduction. Let $(X, \mathfrak{F}, \lambda)$ be a σ -finite measure space. Let $L_1(\lambda) = L_1(X, \mathfrak{F}, \lambda)$ be the real Banach space of λ -integrable real functions and $L_{\infty}(\lambda)$ the dual of $L_1(\lambda)$. All subsets of X discussed in this paper are elements of \mathfrak{F} . For two sets A and B, $A \subset B$, A = B mean that $\lambda(A - B) = 0$, $\lambda(A \triangle B) = 0$, respectively. All functions on X are \mathfrak{F} -measurable real functions and will always be considered up to λ -equivalence. For two functions f and g on X, f = g, $f \leq g$ mean that the equality and the inequality, respectively, are satisfied in the almost everywhere (a.e.) sense with respect to λ . $\{f \geq g\}$ denotes the set $\{x \mid f(x) \geq g(x)\}$. For any set A, A' denotes its complement and 1_A designates the characteristic function of A.

Let $T: f \to fT$ be a positive linear contraction, (i.e., $||T||_1 \le 1$) on $L_1(\lambda)$ to $L_1(\lambda)$. We call T a Markov operator on $L_1(\lambda)$. The adjoint of T which acts on $L_{\infty}(\lambda)$ will be denoted by T, but we will write Tg for $g \in L_{\infty}(\lambda)$. The adjoint T is characterized by (1) T is a positive linear operator, (2) $T1 \le 1$, (3) $g_k \downarrow 0$ implies $Tg_k \downarrow 0$ ([8], p. 86). We have then $\int fT \cdot g\lambda(dx) = \int f \cdot Tg\lambda(dx)$ for $f \in L_1(\lambda)$, $g \in L_{\infty}(\lambda)$.

The purpose of this paper is to prove the following generalization of Ito's results ([6], Theorem 1, Lemma 2).

THEOREM. Let T be a Markov operator on $L_1(\lambda)$. Suppose that the sequence $\{(1/n)\sum_{k=0}^{n-1}wT^k\mid n=1, 2, \cdots\}$ is weakly sequentially compact for some w ε $L_1(\lambda)$ such that w>0. Then the following assertions hold:

Assertion 1. (the pointwise ergodic theorem). For each $f \in L_1(\lambda)$,

$$\lim_{n\to\infty} (1/n) \sum_{k=0}^{n-1} fT^k$$
 exists (\lambda-a.e.).

Assertion 2. (the $L_1(\lambda)$ -mean ergodic theorem). For each $f \in L_1(\lambda)$,

$$\lim_{n\to\infty} (1/n) \sum_{k=0}^{n-1} fT^k$$
 exists in the $L_1(\lambda)$ -norm.

We will prove Assertions 1 and 2 in Section 2 and 3, respectively. Certain relevant facts are stated in Section 2.

The author wishes to thank the referee for valuable suggestions and, in particular, for a simplified proof of Assertion 2.

2. Proof of Assertion 1. The following lemma follows readily from the mean ergodic theorem of Yosida and Kakutani ([7], p. 441; [11], p. 192).

Lemma 1. If the sequence $\{(1/n)\sum_{k=0}^{n-1}wT^k\}$ is weakly sequentially compact, then the sequence converges in the $L_1(\lambda)$ -norm to a function $u \in L_1^+(\lambda)$ which is invariant under T, i.e., uT = u.

Received 5 January 1968.