OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS1

By Alberto Ruiz-Moncayo

University of California, Berkeley

1. The Introduction. The purpose of this paper is to prove the existence of finite optimal stopping rules for certain problems (Theorem 1 and Theorem 2), that are generalizations of a problem introduced by Y. S. Chow and H. Robbins [1] and subsequently generalized by A. Dvoretzky [3].

The problem of Y. S. Chow and H. Robbins is stated as follows: let S_n be the excess of the number of heads over the number of tails in the first n tosses of a fair coin. Does there exist a finite stopping rule for which the expected average gain is maximal? They proved the existence of such a stopping rule; subsequently A. Dvoretzky considered a sequence X_1 , X_2 , \cdots , of independent identically distributed random variables with finite variance, and proved the existence of a finite stopping rule which maximizes $E(S_t/t)$ where $S_n = X_1 + X_2 + \cdots + X_n$. Our method of proof consists of looking at the rate at which the expected tailincome $\sup_{t \in T_{\infty}} E(S_t/(a+t))$ goes to zero as $a \to \infty$ (where T_{∞} is the class of all stopping rules). Then we use this information to show that there is an improvement for any stopping rule which continues indefinitely with positive probability.

2. Definitions and preliminaries. Let $\{X_n, F_n, n=1, 2, \cdots\}$ be a stochastic sequence defined on a probability space (Ω, F, P) , (i.e., (F_n) is an increasing sequence of sub-sigma-algebras of F, and for each $n \geq 1$, X_n is a random variable measurable F_n), with $E|X_n| < \infty$ for $n=1,2,\cdots$, and $E(\sup_n X_n^+) < \infty$. Let $T_\infty = \text{class of all stopping rules with respect to } (F_n)$, i.e., class of all $t:\Omega \to \{1,2,\cdots,\infty\}$ such that $[t=k] \in F_k$ for $k=1,2,\cdots,T=\{t \in T_\infty: t<\infty \text{ a.s.}\}$. Given a $\tau \in T$ let,

$$T_{\infty}^{(\tau)} = \text{class of all random variables } t:\Omega \to \{0, 1, \cdots, \infty\}$$

such that $[t = k] \varepsilon F_{\tau+k}$.

If $t \in T_{\infty}$, following D. O. Siegmund we adopt the convention that $X_t = \limsup_{n \to \infty} X_n$ if $t = \infty$.

For this class of stochastic sequences D. O. Siegmund has shown (Theorem 4 of [5]), that if:

$$s = \text{first } n \ge 1 \text{ such that } X_n = f_n$$

= ∞ if no such n exists,

1905

Received 26 September 1967.

¹ This paper is based on the author's Ph.D. dissertation submitted to the University of California, Berkeley; and was prepared with the partial support of the Institute Nacional de la Investigacion Científica Mexico and by the National Science Foundation, Grant GP 5059.