NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS¹

By Percy A. Pierre²

University of Michigan

1. Introduction. A general formulation of the central limit problem for sums of independent random variables is the following (see Loève [3], p. 291). Let

$$S_n = \sum_k X_{nk}$$

where $k = 1, \dots, k_n, k_n \to \infty$ as $n \to \infty$, and for each $n \{X_{nk}\}$ are independent random variables with probability distribution functions F_{nk} and $EX_{nk} = 0$. Let $\{F_n\}$ be the distribution functions of $\{S_n\}$ and let $\Phi(x)$ be the distribution function of a normal random variable with zero-mean and variance σ^2 . Under these conditions it is possible to show the following:

THEOREM 1.1. Let $\max_k \operatorname{Var} X_{nk} \to 0$ and $\sum_k \operatorname{Var} X_{nk} \to \sigma^2 < \infty$ where σ^2 is a positive constant. The sums S_n are asymptotically normal (i.e., $F_n(x) \to \Phi(x)$) if and only if for every $\epsilon > 0$

$$(1.1) g_n(\epsilon) = \sum_k \int_{|x| \ge \epsilon} x^2 dF_{nk} \to 0.$$

Except in special cases, the application of condition (1.1) is difficult because of the integrals involved. By assuming the existence of fourth-order moments, we are able to prove new necessary and sufficient conditions for both normal and Poisson convergence which involve only moments. The proof of the theorem makes use of a characterization of the normal distribution among infinitely divisible (ID) laws which was perhaps first recognized by Borges [1] and later independently by the author [4].

2. Normal convergence.

THEOREM 2.1. Let $E|S_n|^{(4+\delta)}$ be uniformly bounded for some $\delta > 0$. Let $\max_k \operatorname{Var} X_{nk} \to 0$, $\sum_k \operatorname{Var} X_{nk} \to \sigma^2 < \infty$ where σ^2 is a positive constant. Then S_n is asymptotically normal if and only if

(2.1)
$$ES_n^4 - 3\{ES_n^2\}^2 \to 0.$$

Proof. The asymptotic normality of S_n implies condition (2.1) by the moment convergence theorem (see Loève [3], p. 184) and the fact that for a zero-mean normal random variable S, $ES^4 - 3\{ES^2\}^2 = 0$.

To prove the converse it is sufficient to show that every convergent subsequence $\{F_{n'}\}$ of $\{F_n\}$ converges to $\Phi(x)$ (see Feller [2], p. 261).

Received 1 July 1968.

¹ This research was done at the University of Michigan while the author was on a Post-Doctoral Research Fellowship in the Program of Information and Control Engineering.

² Currently with the System Sciences Department of The RAND Corporation, Santa Monica.