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THE TAIL FIELD OF A MARKOV CHAIN'

By Avrax F. ABRAHAMSE

University of Southern California

1. Introduction. In [1] Blackwell characterized the invariant field of a Markov
chain in terms of subsets of the state space called almost closed sets. We generalize
Blackwell’s results, and obtain a similar characterization of the tail field of the
chain. Our discussion is modeled upon Chung’s exposition ([3], Part I, Sec. 17)
of Blackwell’s results, and many of our techniques are simple extensions of those
to be found in Chung’s book.

Let I denote a subset of the integers, which will be the state space of the Mar-
kov chain we are going to construct. Let I denote the space of all sequences
j= (Jo,51, ) of elements of I. Let z,:I° — I denote the nth coordinate func-
tion, 2,(j) = j» (n = 0, 1, - - - ). Let & denote the smallest Borel field of subsets
of I” with respect to which all the functions 2 , #; , - - - are measurable.

The shift function T':I” — I” is defined by setting

T(jo,jl, "') = (jl)j2,"')'

A set A ¢ § is said to be smvariant if T'A = A. The class of invariant sets, de-
noted by G, is a o-field, called the tnvariant field.

If Y1, Y., - - is a sequence of functions defined on I”, let &(Y;, Y5, ---)
denote the smallest Borel field with respect to which these functions are measur-
able. For n = 0, let . = ®(xn, Tny1, -+ ). Wenote that § = F,. Let F, =
Nuz0 Fn . T is called the tal field. When A is a subset of I”, by the expression TA
wemean TA = {Tj|je A}.

TeEOREM 1. T maps ., one-to-one onto itself,and G = {AeF., | TA = A}.

This theorem states that if we regard F,, as a set of “points,” then T acts as a
permutation on F. , and G is the set of fixed points. Blackwell has shown that
modulo equivalence relations, there is an isomorphism between G and the class
of almost closed sets. We will show that the class of almost closed sets can be
embedded in a class of objects which is isomorphic in the same way to &, . Within
this class, the almost closed sets correspond to objects which are invariant under
the action of a shift function. Furthermore, the isomorphism commutes with this
shift.

Proor oF TarEorEM 1. T is a countably additive map from & into &, so it is
easy to show that T—'F,, = Fpmys . For any set A S I°, T(T'A) = A, and so it
follows that T mi1 = Fn (m = 0) and these observations imply that T, = Fo .
To show that T is one-to-one, suppose for A, Az € Fo, , TA; = T A, . This means
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