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1. Introduction. Let X1, X;, --- be a sequence of independent observations
from a population with mean p and finite nonzero variance o*. We wish to esti-
mate the unknown p by confidence intervals of prescribed ‘“‘accuracy’” and pre-
scribed probability of coverage «. Let

(1) X, o= X, - (n=12,---).

We speak of “absolute acecuracy’” when estimating u by

(2) In = (”:,X-n - /"'l = d), (d > O)’

and, if u # 0, we speak of “proportional accuracy’” when estimating p by

(3) Jn = (f‘:an—.“l éP,FD; 0<p<I).
Denote by p the coefficient of variation o/|u| and define

(4) n(d) = min,s, (n:e® < n(d/a)?),

(5) m(p) = min,z; (n:p" = n(p/a)’)

where a is the $(1 — «)th fractile of the standard normal distribution. Then (4)
and (5) increase without bound as the arguments tend to zero. Hence for small
arguments we can achieve (at least approximately) the required probability of
coverage o by taking the “sample size”’ n no smaller than n(d) (for absolute ac-
curacy) or m(p) (for proportional accuracy).

If, however, o (the “appropriate parameter” for absolute accuracy) is un-
known, or if p° (the “appropriate parameter” for proportional accuracy) is un-
known then (4) or (5) are not available. On the other hand if we let

(6) V= (14 2 (X - X)), (n=12--),
then the stopping rules

(7) N = min,z1 (n:V,? < n(d/a)?)

and

(8) M = min,s: (n:(V./X,)" £ n(p/a)?)
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