A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERGENCE RATES¹

By James Avery Davis

Sandia Corporation

For a given sequence of independent random variables $\{X_n\}$ a monotonic increasing positive sequence $\{\varphi_n\}$ is said to be in the upper class $\mathfrak U$ if

$$P[S_n > n^{\frac{1}{2}}\varphi_n \text{ infinitely often}] = 0,$$

where $S_n = \sum_{k=1}^n X_k$.

Otherwise $\{\varphi_n\}$ is in the lower class $\mathcal L$ and the above probability is zero. In 1946, Feller [3] characterized these sequences as follows:

THEOREM (Feller). Let $\{X_n\}$ be a sequence of independent identically distributed random variables with

$$EX_1 = 0$$
, $EX_1^2 = 1$, and $\int_{|t|>y} t^2 dF = O((\lg \lg y)^{-1})$.

Then a monotonic increasing sequence $\{\varphi_n\}$ is in the upper class if and only if

$$\sum_{n=1}^{\infty} \varphi_n e^{-\varphi_n^2/2} n^{-1} < \infty.$$

The main result here is a characterization of the upper class in terms of a prescribed convergence rate for the partial sums of the random variables. This result represents an improvement of work previously done in this area. In [1] Baum and Katz show the following:

THEOREM [Baum and Katz]. Let $\{X_n\}$ be a sequence of independent identically distributed random variables with

- (1) $EX_1 = 0$, (2) $EX_1^2 = 1$,
- (3) $EX_1^2(\lg |X_1|)^{1+\delta} < \infty$ for some $\delta > 0$. Then a monotonic increasing sequence $\{\varphi_n\}$ is in the upper class for $\{X_n\}$ if and only if

$$\sum_{n=1}^{\infty} \varphi_n^2 n^{-1} P[S_n > n^{\frac{1}{2}} \varphi_n] < \infty.$$

In [2] the author shows that the same conclusion may be drawn if hypothesis (3) is weakened to $EX_1^2 \lg |X_1| \lg \lg |X_1| < \infty$. Here we obtain a similar conclusion under a moment condition slightly stronger than Feller's O-condition.

Theorem. Let $\{X_n\}$ be a sequence of independent identically distributed random variables with $EX_1 = 0$, $EX_1^2 = 1$, and $EX_1^2 \lg \lg |X_1| < \infty$. Then a positive monotonic increasing sequence is in the upper class for $\{X_n\}$ if and only if

$$\sum_{n=3}^{\infty} (\lg \lg n) n^{-1} P[S_n > n^{\frac{1}{2}} \varphi_n] < \infty$$

Received 14 October 1968.

¹ This work was sponsored in part by the U. S. Atomic Energy Commission. Research was done at the University of Montreal.

² Throughout this paper lg X denotes the function $lg X = log_e X$ for X > 1 and 0 otherwise.