A REMARK ON THE KOLMOGOROV-PETROVSKII CRITERION¹

By P. J. BICKEL

University of California, Berkeley

Let $X(t, \omega)$ be any separable version of the standard Wiener process (Brownian motion) defined on a probability space (Ω, α, P) . Let ψ be any nonnegative function on $(0, \infty)$ such that $\lambda(t) = t^{-\frac{1}{2}}\psi(t)$ is monotone nondecreasing (\uparrow) . Define $T_{\psi}(\omega) = \sup\{t: X(t, \omega) \ge \psi(t)\}$ and $\Lambda_{\psi}(\omega) = \lambda\{t: X(t, \omega) \ge \psi(t)\}$ where λ is Lebesgue measure on $(0, \infty)$. The Kolmogorov-Petrovskii criterion (proved for coin tossing by Erdös) states that,

$$(1) P[T_{\psi} < \infty] = 1$$

if and only if,

(2)
$$Q(\psi) = \int_{1}^{\infty} t^{-3/2} \psi(t) \exp\left[-\frac{1}{2} \psi^{2}(t) t^{-1}\right] dt < \infty.$$

A beautiful treatment of these results is given in Strassen [3].

It is a trivial consequence of this criterion that if ψ is such that λ is \uparrow and (2) holds then,

$$(3) P[\Lambda_{\psi} < \infty] = 1.$$

The purpose of this note is to prove a partial converse of (3). Theorem. Suppose ψ is such that λ is \uparrow and

$$\sup_{t\geq 1} t^{-1} \psi(t) < \infty.$$

If $Q(\psi) = \infty$, then

$$(5) P[\Lambda_{\psi} = \infty] = 1.$$

We begin with a lemma which is well known.

LEMMA. Let $t_1 < t_2 < \cdots < t_n < \cdots$ where $t_n \uparrow \infty$ be a given sequence of numbers. Suppose $\mathfrak B$ is the σ field generated by the variables $\{X(t_i, \cdot)\}, i \geq 1$, and $\mathfrak B_j, j \geq 1$, is the σ field generated by the variables $\{X(t, \cdot)\}, t_{j-1} \leq t < t_j$ where $t_0 = 0$. Then the σ fields $\mathfrak B_1, \mathfrak B_2, \cdots$, are conditionally independent given $\mathfrak B$.

PROOF. This is, of course, a general fact about Markov processes. It evidently suffices to check the independence of events A_1, \dots, A_r where $A_j \in \mathfrak{G}_j$ is a cylinder set based on i_j of the variables $\{X(t, \cdot)\}, t_{j-1} \leq t < t_j$, where r, i_j and the variables chosen are arbitrary. Let $\mathfrak{G}^{(n)}$ be the σ field generated by $X(t_1, \cdot), \dots, X(t_n, \cdot)$. Since $\mathfrak{G}_n \uparrow \mathfrak{G}$ by the martingale convergence theorem it suffices to show that A_1, \dots, A_r are conditionally independent given $\mathfrak{G}^{(n)}$ for all n sufficiently large. Therefore we need only check that if X_1, \dots, X_N is

Received 20 September 1968.

 $^{^{\}rm 1}$ This research was partially supported by the Office of Naval Research, Contract, NONR N00014-67-A-0114-0004.