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1. Introduction. The least upper bound is derived for the variance of unimodal
probability distributions, which are restricted to a finite interval of the real line
and possess probability densities with respect to Lebesgue measure. In applica-
tions the probability of some rare event is often desired, where the exact form of
a distribution and/or its variance are not readily derivable, although the distri-
bution is intuitively known to be unimodal. In such cases an upper bound for
the desired probability may be available, e.g., via Chebycheff’s inequality, as a
function of an upper bound upon the unknown variance. Variance bounds also
find use in applications of the Central Limit Theorem. Outside of such applica-
tions, it is of separate academic interest to observe the extent to which the con-
dition of unimodality limits the attainable variance.

Johnson and Rogers [2] have shown that for unimodal distributions, the vari-
ance is bounded below by (mean-mode)’/3. More recently, Gray and Odell [1]
have shown that the variance of certain piecewise continuous functions, re-
stricted to a finite interval, is maximized if taken with respect to the uniform
density compared with any other density on the interval that is unimodal, piece-
wise continuous, and symmetric about the interval midpoint. Their result in-
dicates that the uniform density has the maximum variance within the cited
class of symmetric densities.

This paper extends the results of Gray and Odell by dropping the require-
ment of symmetry—however, at the expense of restricting attention to the distribu-
tion variance. Obviously, the amount of available description of the distribution
determines the exactitude of variance bounds. Merely knowing that a distribu-
tion is restricted to [a, b] serves to bound its variance by (b — a)’/4, which
derives from the non—unimodal Bernoulli distribution with atoms of equal prob-
ability measure at © = @ and z = b. It will be shown here that the requirement
of unimodality restricts the variance to (b — a)2/9, and that this is a least upper
bound. Note that this bound exceeds the variance (b — a@)?/12 of a uniform
density on [a, b]. Some sufficient conditions are also given for the distribution
variance not to exceed (b — a)?/12. The moments of the distribution, as with the
distribution itself, are presumed unknown.

2. Preliminaries. Let C* denote the class of probability densities with respect
to Lebesgue measure on the real line, that are restricted to a finite interval [a, b],
and that are unimodal. Let C = {f &£ C*; some modes of f are in the interior (a, b)}.
If x = mis a mode of f(z), then f(x) is monotone on [a, m) and on (m, b] and can
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