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ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE REGRESSION!

By W. J. StuppEN aAnD D. J. VANARMAN

Purdue University

1. Introduction. Let f = (fo, f1, -+, fa) be a vector of linearly independent
continuous functions on a closed interval [a, b]. For each z or “level” in [a, b] an
experiment can be performed whose outcome is a random variable Y (z) with
mean value D i~8:f:(x) and variance o, independent of x. The functions f,,
Ji, -++, f are called the regression functions and assumed known to the experi-
menter while the vector of parameters = (8, 6:, ---, 8,) and ¢” are unknown.
One of the main problems in the above setup is the estimation of functions
of the vector # by means of a finite number N of uncorrelated observations
{Y (x1)}7=1 . Given a specific function of 8 and a criterion of what a good estimate
is, the design problem is one of selecting the /s at which to experiment. In the
present paper an experimental design is a probability measure u on [a, b]. The
experimenter then takes his observations at the different levels proportional to
the measure p. For a more complete discussion of the above model see Kiefer
(1959) or Karlin and Studden (1966a).

For estimating linear functions of 6, minimaxity problems, etc., the information
matrix of u plays an important role. For an arbitrary probability measure on
[a, b], the information matrix M (u) is the matrix with elements

Mme; = mi.’i(") = f[ll,b]f’ifi d”’J (%J = 07 ]'J tee )n)-

For two probability measures u and » on [a, b] we say v = por M (v) = M (u) if
the matrix M (v) — M (1) is non-negative definite and unequal to the zero matrix.

DeriNiTION 1. A probability measure or design u is said to be admissible if
there is no design » such that » = u. Otherwise u is inadmissible.

For the case of ordinary polynomial regression where f = (fo, fi, -+, fa) =
(1,z, -+, 2") Kiefer (1959, page 291) has shown that u is admissible if and only
if the spectrum of u, S(u), has at most n — 1 points in the open interval (a, b).
In this paper we shall generalize the above result to spline polynomial regression
functions. We consider the interval [a, b] and choose 4 fixed points or ‘“knots”

§1,6, - ,&suchthate < & < & < -+ < & < b. The type of regression fune- -

tion under consideration will be a polynomial of degree (at most) n on each of
the o + 1 intervals (¢, £iu) 2 = 0, 1, -+, & (5 = a and &y = b) and will
have n — k: — 1 continuous derivatives at &, ¢ = 1, ---, h. The integers k;
are assumed to satisfy 0 < k; = n — 1 so that the regression function is always
at least continuous. The following lemma gives a characterization of the type of
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