FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES—III

By Martin Fox¹ and Herman Rubin²

Michigan State University and Purdue University

1. Introduction. Let $\{Y_k\}$ be a stochastic process where either $k=1, 2, \cdots$ or $k=0, \pm 1, \pm 2, \cdots$. Suppose there exist a time n and a state ε such that $P(Y_n=\varepsilon)>0$. In this case, the rank at time n of the state ε is defined in [3], although the notion was first considered by Gilbert in [5]. The definition is such that a state of rank 1 is Markovian.

Let $\{X_k\}$ be a second stochastic process indexed as $\{Y_k\}$. Gilbert [5] proved (but stated in far less generality) that if $v_n(\varepsilon)$ and $\mu_n(\delta)$ are the ranks at time n of the states ε of $\{Y_k\}$ and δ of $\{X_k\}$ respectively, and if $Y_n = f(X_n)$, then

$$(1.1) v_n(\varepsilon) \leq \sum_{f_n(\delta) = \varepsilon} \mu_n(\delta),$$

Dharmadhikari [1] considered the case of stationary $\{Y_k\}$ with all states of finite rank and found an additional condition in order to guarantee $Y_k = f(X_k)$ for $\{X_k\}$ stationary and Markovian. The present authors [3] provided an example showing Dharmadhikari's result cannot be obtained without some condition beyond finiteness of rank.

In the present paper we extend the definition of rank by eliminating the condition $P(Y_n = \varepsilon) > 0$ and generalize Gilbert's, Dharmadhikari's, and our own results.

Section 2 contains the extension of the definition of rank. Sections 3 and 4 contain, respectively, the extensions of Gilbert's and Dharmadhikari's results. The extension of the Dharmadhikari-type result to the nonstationary case is discussed in Section 5. Section 6 contains an outline of the extension of the work of the present authors [4].

2. The extended definition of rank. Let U_k be the state space of $\{Y_k\}$ at time k and set $V_n = \cdots \times U_{n-2} \times U_{n-1}$ and $W_n = U_{n+1} \times U_{n+2} \times \cdots$. Let \mathscr{A}_n , \mathscr{S}_n and \mathscr{T}_n be, respectively, the σ -algebras of measurable subsets of U_n , V_n and W_n . Assume all \mathscr{A}_i (and hence \mathscr{S}_n and \mathscr{T}_n) are separable. For $A \in \mathscr{A}_n$, $S \in \mathscr{S}_n$ and $T \in \mathscr{T}_n$ let

$$P_n(S, A, T) = P((\cdots, Y_{n-2}, Y_{n-1}) \in S, Y_n \in A, (Y_{n+1}, Y_{n+2}, \cdots) \in T).$$

Let $Q_n(A) = P_n(V_n, A, W_n)$ and

$$p_n(S,\varepsilon,T) = \frac{dP_n(S,\cdot,T)}{dQ_n}(\varepsilon).$$

The Annals of Mathematical Statistics.

www.jstor.org

Received May 26, 1969.

¹ Sponsored by Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

² Partially supported by Office of Naval Research Contract N 00014-67-A-0226-0008.