A MARTINGALE DECOMPOSITION THEOREM¹

By GORDON SIMONS

University of North Carolina

Let Z be a random variable with $E|Z| < \infty$ and define recursively

$$Z_0 = EZ, \qquad Z_n = E^{\mathscr{F}_n}Z,$$

where

(2)
$$\mathscr{F}_n = \mathscr{B}(Z_{n-1}, I(Z \ge Z_{n-1})) \text{ for } n = 1, 2, \dots^2$$

The Z_n sequence constitutes a martingale decomposition of Z in the sense of the following

THEOREM.

- (i) $Z_0, Z_1, \dots, Z_n, \dots, Z$ is a martingale.
- (ii) The conditional distribution of Z_n given Z_{n-1} is a one or two point distribution a.s. for $n = 1, 2, \cdots$.
 - (iii) $Z_n \to Z$ a.s. as $n \to \infty$.

PROOF. It is useful to define a closely related sequence by

$$Y_0 = EZ, \qquad Y_n = E^{\mathscr{G}_n} Z,$$

where

(4)
$$\mathscr{G}_n = \mathscr{B}(Y_i, I(Z \ge Y_i); i = 0, \dots, n-1)$$
 for $n = 1, 2, \dots$

We shall show that

$$\overline{\mathscr{F}}_n = \overline{\mathscr{G}}_n$$

from which we may conclude (i) (cf., [1] page 293) and

(6)
$$Y_n = Z_n \text{ a.s. for } n = 0, 1, \dots$$

To show (5), it suffices to show for $0 \le j < k$ that

(7)
$$Z \ge Y_i$$
 if, and only if, $Y_k \ge Y_i$ a.s. and

(8)
$$Y_i$$
 is measurable with respect to $\overline{\mathcal{B}}(Y_k)$.

Received July 22, 1969.

¹ Research partially sponsored by the National Science Foundation under Grant No. GU-2059.

² We shall assume that everything is defined on a basic probability space (Ω, \mathcal{F}, P) . For an arbitrary event $A \in \mathcal{F}$ and arbitrary random vector W, we denote I(A) and $\mathcal{B}(W)$ as the indicator function (taking the value 1 on A and 0 off A) and the σ-field generated by W respectively. $\overline{\mathcal{B}}(W)$ will refer to the smallest σ-field containing $\mathcal{B}(W)$ and the null sets of \mathcal{F} .