FLUCTUATIONS WHEN $E(|X_1|) = \infty^1$

By JOHN A. WILLIAMSON

University of Colorado

1. Introduction. Let $\{X_n\}$ be a sequence of independent identically distributed random variables. Set $S_n = \sum_{k=1}^n X_k$ and $S_0 \equiv 0$. We define the two random variables, $N(\omega)$ and $M(\omega)$, by $N(\omega) = \sum_{n=0}^{\infty} I_{\{\omega: S_n(\omega) \ge 0\}}$ and $M(\omega) = \sup_{n \ge 0} \{S_n(\omega)\}$.

It is the purpose of this paper to study the problem of the finiteness of N, M, E(N), and E(M) in the case when $E(|X_1|) = \infty$. We obtain results which parallel known results for the case when $E(X_1)$ is finite and negative. In [7] it is shown that if $O > E(X_1) > -\infty$ and if k is a positive integer that $E(M^k) < \infty$ if and only if $E((X_1^+)^{k+1}) < \infty$. This difference of unity between the order of these moments appears as the difference between α and $\alpha+1$ in our results. If $0 > E(X_1) > -\infty$ then it can be deduced from [3] and [6] and a truncation argument that $E((X_1^+)^2) < \infty$ if and only if $E(N) = \sum_{n=0}^{\infty} P(S_n \ge 0) < \infty$. The fact that $E(N) < \infty$ implies $E((X_1^+)^2) < \infty$ when $E(\overline{X_1})$ is finite and negative, can also be obtained from Theorem 7 of [8] by setting l = 2. This ratio of 1 to 2 in the order of these moments appears as the ratio of α to 2α in our results and suggests conjectures concerning the existence of higher moments of N and ${X_1}^+$. In all that follows, $F(x) = P(X_1 \le x)$. All slowly varying functions, L, are assumed to have been defined so that L(x) = L(-x).

PROPOSITION 1. Assume there exists $x_0 < 0$, a constant α satisfying $0 < \alpha < 1$, and a function L slowly varying at ∞ , such that for all $x \leq x_0$, $L(x)/|x|^{\alpha}$ is monotone and $F(x) \ge L(x)/|x|^{\alpha}$. Then:

- (i) $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$ implies both N and M finite a.s.;
- (ii) If $\alpha \neq \frac{1}{2}$, $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$ implies $E(N) < \infty$; (iii) $E((X_1^+)^{1+\alpha}/L(X_1^+)) < \infty$ implies $E(M) < \infty$.

Proposition 2. Assume there exists $x_0 < 0$, a constant α satisfying $0 < \alpha < 1$, and a function L slowly varying at ∞ , such that for all $x \leq x_0$, $L(x)/|x|^{\alpha}$ is monotone and $F(x) \leq L(x)/|x|^{\alpha}$. Then:

- (i) Either N or M finite a.s. (hence both) implies $E((X_1^+)^{\alpha}/L(X_1^+)) < \infty$;
- (ii) $E(N) < \infty$ implies $E((X_1^+)^{2\alpha}/L^2(X_1^+)) < \infty$;
- (iii) $E(M) < \infty$ implies $E((X_1^+)^{\alpha+1}/L(X_1^+)) < \infty$.

REMARK 1. If F and G are probability distribution functions with $F \subseteq G$ for all x then by induction $F^{n*} \leq G^{n*}$ for all x and all n. $L(x)/|x|^{\alpha}$ which is assumed monotone for $x \le x_0 < 0$ can be pieced together with F to form a probability

Received May 5, 1969.

¹ Research supported in part by NSF grant GP8890.