A NOTE ON UNIFORM CONVERGENCE OF STOCHASTIC PROCESSES¹

By Naresh C. Jain and G. Kallianpur

University of Minnesota

0. Introduction. Our aim in this note is to extend Theorems 5.1 and 5.2 of [4]. Let $R(\cdot, \cdot)$ be the covariance kernel of a Gaussian process with index set S, here S will always mean a compact metric space. R is assumed throughout to be continuous on $S \times S$. Let H(R) be the reproducing kernel Hilbert space of R. It is a Hilbert space of continuous functions k on S with the following properties:

$$(0.1) R(\cdot,t) \in H(R) \text{for each } t \in S;$$

$$\langle k, R(\cdot, t) \rangle = k(t),$$

where \langle , \rangle denotes the inner product in H(R). For a discussion of reproducing kernel Hilbert spaces and their application to the study of Gaussian processes we refer to [1] and [5]. In what follows C(S) will denote the Banach space of real-valued continuous functions on S with the sup norm, and $\mathscr C$ the σ -algebra of Borel sets of C(S). X will denote a generic element of C(S).

Before stating the main results we would like to record here for later reference the fact that if $\{X_t, t \in S\}$ is a Gaussian process on some probability space (Ω, \mathcal{F}, P) , then there is an isometric isomorphism between H(R) and the closure of the linear space spanned by $\{X_t, t \in S\}$ in $L_2(\Omega, \mathcal{F}, P)$. We shall denote this closure by $\mathcal{L}_2(X_t, t \in S)$ and this isometric isomorphism by θ , where for $t \in S$ we have $\theta(R(\cdot, t)) = X_t$. We now state the main results.

THEOREM 1. Let $\{X_t, t \in S\}$ be a Gaussian process with covariance R and almost all paths continuous on a complete probability space (Ω, \mathcal{F}, P) . Let $\{\psi_j\}_{j=1}^{\infty}$ be a complete orthonormal system (CONS) in H(R) and let $\{\xi_j\}_{j=1}^{\infty}$ be the sequence of independent random variables on (Ω, \mathcal{F}, P) each distributed normally with mean 0 and variance 1, given by $\xi_j = \theta(\psi_j)$. Then the partial sums

(0.3)
$$\sum_{j=1}^{n} \xi_{j}(\omega) \psi_{j}(t) = S_{n}(t, \omega)$$

converge uniformly in $t \in S$ to $X_t(\omega)$ as $n \to \infty$ a.e. (P).

Theorem 2. Let $\{\eta_j\}_{j=1}^{\infty}$ be a sequence of independent random variables on a complete probability space (Ω, \mathcal{F}, P) , each distributed normally with mean 0 and variance 1. Let R be a covariance such that there exists a Gaussian process with this covariance and with almost all sample paths continuous (on some probability space). Let $\{\psi_j\}_{j=1}^{\infty}$ be a CONS in H(R). If S = [0, 1], then the partial sums

(0.4)
$$\sum_{j=1}^{n} \eta_j(\omega) \psi_j(t) = S_n'(t,\omega)$$

converge uniformly in $t \in [0, 1]$ to a Gaussian process on (Ω, \mathcal{F}, P) whose covariance is R and almost all of whose sample paths are continuous as $n \to \infty$ a.e. (P).

Received August 18, 1969.

¹ This research has been supported in part by an NSF research grant.