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0. Introduction. Our aim in this note is to extend Theorems 5.1 and 5.2 of [4].
Let R(-, *) be the covariance kernel of a Gaussian process with index set .S, here
S will always mean a compact metric space. R is assumed throughout to be con-
tinous on S x S. Let H(R) be the reproducing kernel Hilbert space of R. It is a
Hilbert space of continuous functions £ on S with the following properties:

(0.1) R(-,t)eH(R) for each teS;
0.2) <k, R(, 1)) = k(1),

where {, ) denotes the inner product in H(R). For a discussion of reproducing
kernel Hilbert spaces and their application to the study of Gaussian processes we
refer to [1] and [5]. In what follows C(S) will denote the Banach space of real-
valued continuous functions on S with the sup norm, and % the g-algebra of Borel
sets of C(S). x will denote a generic element of C(S).

Before stating the main results we would like to record here for later reference
the fact that if {X,, 7€ S} is a Gaussian process on some probability space (Q, #, P),
then there is an isometric isomorphism between H(R) and the closure of the linear
space spanned by {X,, teS} in L,(Q, #, P). We shall denote this closure by
ZL,(X,, teS) and this isometric isomorphism by 6, where for teS we have
O(R(-, t)) = X,. We now state the main results.

THEOREM 1. Let {X,, t€S} be a Gaussian process with covariance R and almost
all paths continuous on a complete probability space (Q, #, P). Let {{/;}7-, be a
complete orthonormal system (CONS) in H(R) and let {£;}7-, be the sequence of
independent random variables on (Q, &, P) each distributed normally with mean 0
and variance 1, given by &; = 0(y ;). Then the partial sums

0.3) 2i=18(@W (1) = S,(t, w)

converge uniformly inte S to X,(w) asn — oo a.e. (P).

THEOREM 2. Let {n;}7-, be a sequence of independent random variables on a
complete probability space (Q, #, P), each distributed normally with mean O and
variance 1. Let R be a covariance such that there exists a Gaussian process with this
covariance and with almost all sample paths continuous (on some probability space).
Let {{/;}?-, be a CONS in H(R). If S = [0, 1], then the partial sums
(0.4) Yi=infW (1) =S, (t,w)
converge uniformly in t€ [0, 1] to a Gaussian process on (Q, &, P) whose covariance
is R and almost all of whose sample paths are continuous asn — « a.e. (P).
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