ON THE FIRST TIME $|S_n| > cn^{\frac{1}{2}(1)}$

By MICHAEL WOODROOFE

University of Michigan

1. Introduction. Let X_1, X_2, \cdots be an infinite sequence of independent, identically distributed (i.i.d.) random variables having a finite mean μ and a finite, positive variance σ^2 and consider the stopping time N defined by

(1.1)
$$N = \text{least } n \ge 1 \text{ for which } |S_n| > cn^{\frac{1}{2}} \text{ or } +\infty \text{ if no such } n \text{ exists,}$$

where c is a positive constant and $S_n = X_1 + \cdots + X_n$, $n \ge 1$. Obviously, $N < \infty$ w.p. one (by the Strong Law of Large Numbers and the Law of the Iterated Logarithm), but if $\mu = 0$, then $E(N) < \infty$ if and only if $c^2 < \sigma^2$ ([1], [3]). Here we will consider the case $c^2 > \sigma^2$ and will investigate the rate at which E(N) diverges to infinity as $\mu \to 0$. Our results assert the existence of positive constants b_1, b_2, γ_1 , and γ_2 for which $0 < \gamma_1 < \gamma_2 < 1$ and

(1.2)
$$b_1 |\mu|^{-(1+\gamma_1)} \le E(N) \le b_2 |\mu|^{-(1+\gamma_2)}$$

for all sufficiently small values of μ . The constants b_1 and γ_1 depend only on c^2 and σ^2 and exist when $c^2 > 2\sigma^2$; the constants b_2 and γ_2 depend also on the distribution of $(X_i - \mu)/\sigma$ and require higher moments. Explicit values are given for all constants, and it is shown that γ_1 may be made arbitrarily close to one by taking c sufficiently large.

The left side of (1.2) is established in Section 2 and the right side in Section 3. An application to testing the sign of a bias is given in Section 4.

2. The lower bound. Throughout this section and the next we will assume the X's to be i.i.d. with mean μ and finite, positive variance σ^2 . We begin with a variant on Wald's Lemma.

LEMMA 2.1. Let
$$0 < \alpha \le 1$$
 and let $\beta = 1 - \alpha$; then

$$E(N^{-\beta}S_N^{\ 2}) \le 4c \ |\mu|(1+2\alpha)^{-1}E(N^{\frac{1}{2}+\alpha}) + \alpha^{-1}(\sigma^2 + \mu^2)E(N^{\alpha}).$$

PROOF. Without loss of generality, we may assume that $E(N^{\alpha}) < \infty$, in which case

(2.1)
$$n^{-\beta} \int_{N>n} S_n^2 dP \le c^2 n^{\alpha} P(N>n) \to 0$$

as $n \to \infty$. Now for any $k \ge 2$ we may write

(2.2)
$$\int_{N \le k} N^{-\beta} S_N^2 dP = \int_{N=1} S_1^2 dP + \sum_{n=2}^k \left[n^{-\beta} \int_{N > n-1} S_n^2 dP - n^{-\beta} \int_{N > n} S_n^2 dP \right].$$

Received November 3, 1969; revised June 26, 1970.

¹ Research supported by NSF Grant GP-11769.