LOCAL THEOREMS IN STRENGTHENED FORM FOR LATTICE RANDOM VARIABLES

By J. David Mason¹

University of Georgia

- 1. Introduction. Let $\{X_n\}$ be a sequence of independent integral-valued lattice random variables such that the distribution of X_n is one of the distinct non-degenerate distributions H_1, \dots, H_r ($r \ge 2$). With the assumption that there are sequences $\{A_n\}$ and $\{B_n\}$ ($0 < B_n \to \infty$) such that $Z_n \equiv B_n^{-1} (X_1 + \dots + X_n) A_n$ converges in law to a nondegenerate distribution G, this paper investigates some conditions which are sufficient for $\{X_n\}$ to satisfy a local theorem in strengthened form.
- **2. Discussions and results.** V. M. Kruglov [2] noted that a result of A. A. Zinger [5] implies that G has an absolutely integrable characteristic function ϕ and, therefore, a bounded density g.

We say that a local limit theorem holds for $\{X_n\}$ if

$$\lim_{n\to\infty}\sup_{N\in\mathbb{Z}}\left|B_nP(\sum_{i=1}^nX_i=N)-g((N/B_n)-A_n)\right|=0,$$

where Z denotes the set of all integers.

We say that $\{X_n\}$ satisfies a local theorem in strengthened form (L.T.S.) if a local limit theorem (in the usual form) holds for any sequence $\{X_n'\}$ which differs from $\{X_n\}$ only by a finite number of terms.

Since it is possible that for some i among $1, \dots, r$ the number of times that H_i appears among the distributions of X_1, \dots, X_n eventually does not depend on n, we let F_1, \dots, F_k be those among H_1, \dots, H_r for which this does not occur. Let $n_i(n)$ denote the number of times that F_i appears among the distributions of X_1, \dots, X_n . Then $n_i(n) \to \infty$ as $n \to \infty$ for $i = 1, \dots, k$. Let h_i denote the maximum span of F_i for $i = 1, \dots, k$.

LEMMA (Petrov). A necessary condition that $\{X_n\}$ satisfies L.T.S. is that

(1) g.c.d.
$$(h_1, \dots, h_k) = 1$$
.

(Here, as usual, g.c.d. means the greatest common divisor.) The proof of this Lemma is contained in the proof of Theorem 1 of [4]. Because of this lemma, we will always assume that (1) holds.

784

Received February 9, 1970.

¹ Reproduction in whole or in part is permitted for any purpose of the United States Government. This research was supported, in part, by the Office of Naval Research, Contract No. N 0001 4-69-A-0423, Nr. 042-261.