THE DISTRIBUTION OF LINEAR COMBINATIONS OF ORDER STATISTICS FROM THE UNIFORM DISTRIBUTION

By Herbert Weisberg

New York University

1. Introduction. In this paper we derive an algorithm for computing the distribution function of an arbitrary linear combination of order statistics from a uniform distribution. Suppose $U_{(i)}$ is the *i*th smallest observation from a sample of size n from the uniform distribution on [0, 1], with the convention $U_0 \equiv 0$, $U_{n+1} \equiv 1$. Consider a set of S integers $\{k_i\}$ such that

$$(1.1) k_0 = 0 < k_1 < k_2 < \dots < k_S \le n.$$

For any set of constants $d_i > 0$ and any x, we seek

$$P\{\sum_{s=1}^{S} d_s U_{(k_s)} \leq x\}.$$

Our approach is to generalize a formula derived by Dempster and Kleyle (1968).

2. Derivation of the algorithm. Let $X_i = U_{(i)} - U_{(i-1)}, i = 1, 2, \dots n$. Let $c_{n+1} = 0$.

Define $c_1, c_2, \cdots c_n$ by

$$c_{k_i} = c_{k_i+1} + d_i$$
 for $i = 1, \dots S$
 $c_i = c_{i+1}$ for $j \notin (k_1, \dots k_S)$.

Then we have

(2.1)
$$\sum_{s=1}^{S} d_s U_{(k_s)} = \sum_{i=1}^{n} c_i X_i.$$

For the special case S = n, Dempster and Kleyle (1968) have shown that

(2.2)
$$P\left\{\sum_{i=1}^{n} c_{i} X_{i} \leq x\right\} = 1 - \sum_{j=1}^{r} \frac{(c_{j} - x)^{n}}{c_{j} \prod_{i \neq j} (c_{j} - c_{i})}$$

for $0 \le x \le c_1$, where r is the largest positive integer such that $x \le c_r$. In the general case $S \le n$, we wish to allow

$$c_{k_{s-1}+1} = c_{k_{s-1}+2} = \cdots = c_{k_s} = c_{(s)}$$

for $s = 1, 2, \dots S$.

Let $k_s - k_{s-1} = r_s$, $s = 1, \dots S$; and $n - k_S = r_{S+1}$. Then we wish to let the first r_1 c_1 's take the value $c_{(1)}$, the next r_2 take the value $c_{(2)}$, etc. Let $c_{(s+1)} = 0$. In this situation (2.2) is not applicable unless $r_s = 1$ for all s.

Received March 6, 1970; revised October 19, 1970.