A NOTE ON INFINITELY DIVISIBLE RANDOM VECTORS

BY MOSHE POLLAK

The Hebrew University

The purpose of this note is to show a characterization of infinitely divisible random vectors whose projection onto a subspace is normally distributed.

In this paper, \mathbf{x} will denote a k-dimensional vector of real numbers, \mathbf{x}' its transpose, $|\mathbf{x}|$ its length, $\mathbf{\xi}'\mathbf{x}$ the inner product of the vectors $\mathbf{\xi}$, \mathbf{x} , R^k the k-dimensional Euclidean space. By a normal distribution we understand either a proper or a singular normal distribution.

A nonnegative measure M defined on R^k is said to be canonical if it has no atom at the origin and $\int_{R^k} [1 + |\mathbf{x}|^2]^{-1} dM(\mathbf{x}) < \infty$.

For X to be an infinitely divisible random vector, it is necessary and sufficient that there exist a canonical measure M, a vector of real numbers \mathbf{b} , and a nonnegative definite symmetric matrix $\Sigma = (\sigma_{ij})$ such that

(1)
$$\log Ee^{i\mathbf{\epsilon}'\mathbf{X}} = \int_{\mathbb{R}^k} \frac{e^{i\mathbf{\epsilon}'\mathbf{X}} - 1 - i\mathbf{\xi}'\boldsymbol{\tau}(\mathbf{X})}{|\mathbf{X}|^2} dM(\mathbf{X}) + i\mathbf{\xi}'\mathbf{b} - \frac{1}{2}\mathbf{\xi}' \sum \boldsymbol{\xi}$$

where

$$\tau(x) = -1 \qquad x \leq -1
= x \qquad -1 \leq x \leq +1 , \qquad [\tau(\mathbf{x})]' = (\tau(x_1), \dots, \tau(x_k)) .
= 1 \qquad 1 \leq x$$

This representation is unique (see [1] page 559).

Notice that if X is normal, $\log Ee^{i\epsilon'X} = i\xi'b - \frac{1}{2}\xi' \sum \xi$, and thus for normally distributed random vectors M is identically zero.

THEOREM. Let $\mathbf{X}' = (X_1, \dots, X_k)$ be an infinitely divisible random vector, and $\boldsymbol{\xi}_0 \neq \mathbf{0}$ an arbitrary vector in k-space. The distribution of $\boldsymbol{\xi}_0' \mathbf{X}$ is one-dimensional normal if and only if the canonical measure M which corresponds to \mathbf{X} in the representation (1) is carried by the subspace $\{\mathbf{x} \mid \boldsymbol{\xi}_0' \mathbf{x} = \mathbf{0}\}$.

PROOF. We need only prove that if $\xi_0'X$ is normal, then M is carried by $\{x \mid \xi_0'x = 0\}$.

Since for every infinitely divisible random vector \mathbf{X} and every matrix A, $A\mathbf{X}$ is infinitely divisible, we may assume without loss of generality that $\boldsymbol{\xi}_0' = (1, 0, \dots, 0)$. Then:

(2)
$$\log E e^{it\ell_0'X} = ib_1 t - \frac{1}{2} t^2 \sigma_{11} + \int_{R^k} \frac{e^{itx_1} - 1 - it\tau(x_1)}{|\mathbf{x}|^2} dM(\mathbf{x})$$

Received March 15, 1971.