PLAY-THE-WINNER RULE AND INVERSE SAMPLING FOR SELECTING THE BEST OF $k \ge 3$ BINOMIAL POPULATIONS

By Milton Sobel¹ and George H. Weiss²

Imperial College, London

1. Introduction.

Given. k independent binomial populations with unknown probabilities p_i of success and q_i of failure $(p_i' + q_i' = 1)$ on a single trial $(i = 1, 2, \dots, k)$.

Problem. to select the (or a) best population (i.e., the one with the largest p', say p_1).

Main emphasis. the comparison of procedures (all using inverse-sampling stopping rules) that differ only in the sampling method.

The first procedure, R_I , uses play-the-winner, cyclic variation (PWC) sampling rule. It puts the populations in a random order at the outset say $\pi_1, \pi_2, \dots, \pi_k$. Population π_j is sampled until a failure is observed and then π_{j+1} is sampled $(j = 1, 2, \dots, k)$; π_{k+1} is identified with π_1 . Sampling terminates as soon as any one population has r successes; that population is selected as best. We determine r so that the probability of a correct selection (CS) satisfies

$$(1.1) P\{CS \mid R_i\} \ge P^* \text{whenever} p_1 - \max_{i>1} p_i \ge \Delta^*,$$

where the constants P^* (with $1/k < P^* < 1$) and Δ^* (with $\Delta^* > 0$) are preassigned. Approximations and a table for $r = r(P^*, \Delta^*)$ are given for selected values of k, P^* and Δ^* . Table 2 gives exact vs. approximate expected total number of observations $E\{N \mid R_I\}$ for k = 2 and some comparisons with a fixed sample size procedure.

The second procedure, R_I' , uses vector-at-a-time (VT) sampling; it takes one observation from each of the k populations (simultaneously) until at least one of them has r successes. The winner (or one selected from the winners at random) is then chosen as best. We determine r by (1.1) with R_I replaced by R_I' . It is shown (Section 4) that the minimum $P\{CS\}$ and hence the value of r required to satisfy (1.1) is exactly the same for the PWC-rule (procedure R_I) and the VT-rule (procedure R_I'). (In [5] a similar result was found for fixed-sample stopping rules; also see the discussion of procedure \hat{R}_I below.)

A procedure, R_I^* , dual to R_I is studied (Section 6); it is based on waiting for a fixed number of failures and it is shown asymptotically to be an improvement on R_I when $p_1 < \frac{1}{2}$.

Received February 4, 1970; revised February 1, 1972.

¹ This author was supported by a National Institutes of Health (NIH) Special Fellowship, National Sciences Foundation (NSF) Grant GP-9018, and NSF Grant GP-28922X at the University of Minnesota. On leave from the University of Minnesota.

² On leave from National Institutes of Health, Bethesda, Maryland.