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Comment: Response-Adaptive Randomization
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Yunshan Duan, Peter Müller and Yuan Ji

Robertson et al. [6] (henceforth RLLV) present a com-
prehensive review on existing response-adaptive random-
ization (RAR) approaches and related practical consider-
ations. We congratulate the authors for a thorough and in-
sightful discussion. The heart of the paper appears in Sec-
tion 3 when the authors address some of the key questions
about the use of RAR for clinical trials.

RAR adaptively modifies randomization probabilities
based on the observed response data from patients dur-
ing an ongoing clinical trial. Although randomization may
be biased, it is important to recognize that the benefits
of randomization are not entirely lost under an RAR ap-
proach. Randomization is a critical feature of clinical trial
design as it allows causal attribution of differences in out-
come to treatment assignment. This is achieved by balanc-
ing all potential confounders. The question then arises, to
what extent might a RAR approach lose this ability to bal-
ance confounders? Most RAR approaches maintain some
randomization (after all, “randomization” is part of the
name). However, in the case of extremely inbalanced pa-
tient allocation, like the ECMO trial [1], the answer may
be unclear. Fundamentally, why would one consider RAR
instead of equal randomization (ER)? Statistical intuition
might suggest balanced allocation of experimental units
(e.g., ER) to be optimal, making biased allocation possi-
bly suboptimal. However, as RLLV (Section 3.2, and Ta-
ble 1) show in two-arm and multiarm trials with binary
outcomes for some RAR designs, this is not always the
case. Do the optimal ratios shown in Section 3.2 sacrifice
other statistical properties (such as efficiency in inference
or frequentist type I error rate) to achieve higher power
than ER?

Technically, RAR uses observed outcomes to modify
randomization probabilities. Since the observed data are
associated with random noise, it is inevitable that the
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modification of the randomization probabilities may be
“wrong,” in the sense of increasing randomization proba-
bilities for inferior arms. This is considered in Section 3.1.
Does RAR lead to a substantial chance of allocating more
patients to an inferior treatment? Putting aside the ques-
tion about being substantial, in a finite sample size RAR
clearly has nonzero probability of allocating more patients
to an inferior treatment. The probability here is defined
as (frequentist) probability under repeated use of RAR
designs. As shown in Table 1 (RLLV), even under ER
there is a 0.069 probability of allocating more than 10%
of sample size to an inferior arm. Some RAR approaches
avoid such imbalance by introducing explicit constraints.
For example, not allowing imbalance to exceed 10% by
construction implies zero probability of achieving more
than 10% imbalance. Perhaps this is related to the rea-
son for some of the zeroes (for imbalance beyond 10%)
in Table 1 of RLLV. And, vice versa, some of the sub-
stantial imbalance metrics Ŝ0.1 for other RAR approaches
in Table 1 are only a result of the lack of such constraints,
rather than any fundamental differences in statistical mod-
eling or algorithms across these RAR approaches. If de-
sired, the same constraint could easily be added to any
approach.

Like most literature, the authors focus the discussion of
adaptive designs on the myopic problem of treatment as-
signment for the next patient (cohort). While most would
agree that formally the problem is a sequential decision
problem [2], Section 2.6, a full solution of the sequential
decision problem is computationally infeasible and cer-
tainly not practicable in the setting of most clinical trial
designs. However, some features of a sequential design
could be retained. A common theme of optimal sequen-
tial decisions is the conflict of “exploration” versus “ex-
ploitation.” In the early cohorts of a clinical trial, there
might be a benefit for assigning some patients to possibly
suboptimal doses or treatments because learning about a
dose-response curve could help to eventually treat more
patients at more effective doses or treatments. Of course,
any such randomization could only be considered in a sit-
uation of approximate equipoise, or minor adverse events.
In contrast, for the last few cohorts there is less bene-
fit of learning, and one might want to focus more on the
most promising doses or treatments. In other words, a de-
sign that starts with exploration and later only switches
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