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1. INTRODUCTION

We thank each of the comment authors for their insights
and perspectives on our work. The comments were wide-
ranging in content and raised many interesting questions
pertaining to our work and its place in the larger scope of
research in the area. We address each commenter in turn.

2. LI

We thank Dr. Li for his interesting comment and novel
proposal for stabilization in the context of estimating
the average treatment effect. Li asks the question as to
whether stabilization techniques that are common for in-
verse probability of treatment weighted (IPTW) estima-
tors could stabilize doubly robust procedures in weakly
identified settings. In essence, Li proposes to use a stabi-
lized propensity score in combination with one-step esti-
mation or TMLE. The stabilized propensity score is of the
form Ḡ0(w | h) = Ḡ0(w)/h(w), where h : W → [0,1] is
some mapping that may depend on P0. Several choices of
h are discussed, such as

(1) h(w) = Ḡ0(w){1 − Ḡ0(w)}∫
Ḡ0(w){1 − Ḡ0(w)}dQ0,W (w)

.

The author proposes a plug-in estimator hn of h, based
on an estimate of the propensity score, Ḡn, and pro-
ceeds as usual with a one-step and TMLE procedure using
the alternative propensity score estimator Ḡn(w | hn) =
Ḡn(w)/hn(w). The resultant estimators are found via
simulation to have reasonable performance in the simu-
lation settings considered in our paper.

Overall, Dr. Li’s idea to bring in stabilization tech-
niques from the IPTW literature to the doubly robust
sphere is novel and interesting. However, we would like
to highlight a potential difficulty when considering cou-
pling this approach with machine learning or other non-
parametric regression techniques. The potential problem
is illustrated most directly by the analysis of Li’s estima-
tor in the case where Ḡ0 is known exactly, as in a stratified
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randomized trial. This setting is important, since it is one
where asymptotically linear, doubly robust estimators can
be generated under the weakest possible assumptions. We
will argue that when the outcome regression is estimated
nonparametrically Li’s estimator may not achieve asymp-
totic linearity in even this “best-case” scenario.

Let ψ1
n,∗ be Li’s TMLE of ψ1

0 , constructed based
on the targeted outcome regression estimate Q̄1

n,∗, the
true stabilized propensity score Ḡ0(· | h) and the em-
pirical distribution of W , Qn,W . Below, we write Pf

to denote
∫

f (o) dP (o) for a given P -integrable func-
tion f and for each P ∈ M. We also denote by Pn

the empirical distribution function based on O1, . . . ,On,
so Pnf = n−1 ∑n

i=1 f (Oi). We define R0n = P0{D1(· |
Q̄1

n,∗,Qn,W , Ḡ0(· | h)) − D1(· | Q̄1
n,∗,Qn,W , Ḡ0)}. A lin-

earization of �1 along with straightforward algebra gives

�1(
Q1

n,∗
) − �1(

Q1
0
)

= −P0D
1(· | Q̄1

n,∗,Qn,W , Ḡ0
)

= −P0D
1(· | Q̄1

n,∗,Qn,W , Ḡ0(· | h)
) + R0n

= (Pn − P0)D
1(· | Q̄1

n,∗,Qn,W , Ḡ0(· | h)
) + R0n,

(2)

where the third line follows since, by construction, the
targeted estimate Q̄1

n,∗ is such that PnD
1(· | Q̄1

n,∗,Qn,W ,

Ḡ0(· | h)) = 0. The first term in the final equality is an em-
pirical process and standard conditions can be assumed to
control its behavior (Appendix B of the web supplement
accompanying the original paper). However,

R0n = EP0

({
h(W) − 1

}[ A

G0(W)

{
Y − Q̄1

n(W)
}])

= EP0

({
h(W) − 1

}

×
[

A

G0(W)

{
EP0(Y | A,W) − Q̄1

n(W)
}])

= EP0

({
h(W) − 1

}[ A

G0(W)

{
Q̄1

0(W) − Q̄1
n(W)

}])

= EP0

[{
h(W) − 1

}{
Q̄1

0(W) − Q̄1
n(W)

}]
.

In order for Li’s estimator to be asymptotically linear with
the claimed influence function, we would need to estab-
lish that R0n = op(n

−1/2). However, the form of R0n is
not second-order unless h(w) = 1 for all w ∈ W (in which
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