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Comment: Invariance and Causal Inference
Stefan Wager

The problem of distinguishing causal effects from non-
causal correlations is one of the oldest and most chal-
lenging questions in statistics. In recent years, Professor
Bühlmann and co-authors have outlined new methodol-
ogy for estimating causal effects that starts from an in-
variance postulate: A set of variables X is causally rel-
evant to an outcome Y if the distribution of Y condi-
tionally on X, L(Y | X), is invariant across all relevant
environments. This hypothesis then leads to statistical
methodologies that seek causal effects by fitting mod-
els that are robust across numerous environments (Peters,
Bühlmann and Meinshausen, 2016, Rothenhäusler et al.,
2019). The present paper, generously prepared by Profes-
sor Bühlmann, is an enlightening summary of this ground-
breaking line of work and a valuable addition to the liter-
ature.

This invariance hypothesis presents a marked and
thought-provoking departure from the currently domi-
nant paradigm for understanding causal effects in epi-
demiology and econometrics, which defines causal ef-
fects in terms of potential outcomes and emphasizes the
role of experimental design in identifying causal effects
(Neyman, 1923, Holland, 1986, Robins and Richardson,
2010, Rubin, 1974, Rubin, 2005). In general, the poten-
tial outcomes based approach allows treatment effects to
vary arbitrarily with both observed and unobserved fea-
tures and is focused on defining, identifying and estimat-
ing various (weighted) treatment effect functionals under
minimal assumptions. Characterizing how the invariance
hypothesis fits into the potential outcomes framework
is important to understanding how the results of Peters,
Bühlmann and Meinshausen (2016) and Rothenhäusler
et al. (2019) connect to more classical approaches.

Potential outcomes and weighted treatment effects. The
earliest application of the potential outcomes framework
was Neyman’s analysis of the randomized controlled trial.
In this setting, we are interested in measuring the effect of
a binary treatment Wi on a real-valued outcome Yi . We
posit the existence potential outcomes {Yi(0), Yi(1)} cor-
responding to the outcome the ith observation would have
experienced had they received treatment assignment 0 or
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1, respectively, such that Yi = Yi(Wi), and then define the
sample average treatment effect1

(1) τSATE = 1

n

n∑
i=1

(
Yi(1) − Yi(0)

)
.

The seminal result of Neyman (1923) is that, if the
treatment assignment Wi is randomized, that is, the
treatment assignment is exchangeable and {Wi}ni=1 ⊥⊥
{Yi(0), Yi(1)}ni=1, then we can construct an unbiased es-
timate of τSATE without assumptions: No modeling as-
sumptions are made on the potential outcomes Yi(w), and
in fact the potential outcomes may even be taken as de-
terministic such that only Wi is random.2 In particular,
it is not necessary to assume that the causal effect is the
same for each unit, for example, that Yi(1) − Yi(0) = τ

for some shared (or invariant) causal parameter τ .
Starting with Rubin (1974), there has been consider-

able interest in generalizing the ideas of Neyman (1923)
beyond the randomized controlled trial, and in develop-
ing appropriate treatment effect estimators that remain
justified without making structural assumptions on the
per-unit treatment effects Yi(1) − Yi(0). One setting that
has received considerable attention is that of Rosenbaum
and Rubin (1983), where treatment assignment Wi is
not randomized, but we observe covariates Xi such that
Wi is as good as random after we condition on them,
{Yi(0), Yi(1)} ⊥⊥ Wi | Xi . Under an IID sampling model,
the semiparametric efficient variance V for estimating the
average treatment effect τ = E[Yi(1)−Yi(0)] can be writ-
ten in terms of the propensity score e(x) = P[Wi = 1 |
Xi = x] (Hahn, 1998, Robins and Rotnitzky, 1995),

V = Var
[
E

[
Yi(1) − Yi(0) | Xi

]]

+E

[
Var[Yi(0) | Xi]

1 − e(Xi)
+ Var[Yi(1) | Xi]

e(Xi)

]
,

and efficient estimators satisfy
√

n(τ̂ − τ) ⇒ N (0,V ).
One complaint about this result, however, is that V

scales with the inverse of the propensity score, and can
get quite large if we have poor overlap (i.e., e(Xi) can get

1One major assumption here is that of no interference, that is, that
Wi only affects the outcome of the ith unit (Imbens and Rubin, 2015).
For a discussion of potential outcomes modeling under interference;
see Basse, Feller and Toulis (2019), Hudgens and Halloran (2008) and
references therein.

2These results can be considerably generalized. For example, Ding,
Feller and Miratrix (2019) and Lin (2013) for a discussion of regres-
sion adjustments in this setting.
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