
Statistical Science
2020, Vol. 35, No. 3, 427–429
https://doi.org/10.1214/20-STS768
Main article: https://doi.org/10.1214/19-STS721
© Institute of Mathematical Statistics, 2020

Comment: Invariance, Causality and
Robustness
Vanessa Didelez

I would like to congratulate Peter Bühlmann on the
honor of being invited to give the Neyman Lecture. Jointly
with a number of co-authors of recent papers, he has
produced a substantial and thought-provoking body of
work in recent years around the concept of invariance.
His achievement is two-fold: He extends causal reason-
ing to involve prediction under new environments; after
several decades of existing research in the field of causal
inference; see early work in the 1970s and 1980s by Ru-
bin, Robins, Pearl, Spirtes and colleagues and the ensuing
explosion of work on this topic in bio-medical statistics,
epidemiology, computer science, sociology and political
science—this is a novel angle on causal inference, using
data in a different way with an original target of infer-
ence so far undervalued in the causal inference literature.
Vice versa, he demonstrates how causal reasoning is im-
portant to predictive modelling. It is a particular achieve-
ment of Bühlmann to have brought key ideas and concepts
of causality and causal inference to the attention of main-
stream statistics. This is not least due to linking causal
ideas, such as invariance (also known as stability (Dawid
and Didelez, 2010)), with fundamental concepts of tradi-
tional statistical inference, such as worst-case risk opti-
mization.

In the following, I will review the differences and simi-
larities of ‘classical’ causal inference and Bühlmann’s ap-
proach.

CAUSAL INFERENCE, BIAS AMPLIFICATION AND
PREDICTION

I would like to discuss some of the ideas in Bühlmann’s
paper by attempting to relate them to a phenomenon
known in the bio-medical/causal inference literature as
‘bias amplification’ (Pearl, 2010, Middleton et al., 2015,
Ding, VanderWeele and Robins, 2017). Consider a simple
linear SEM where

Y = βX + αH + ε,

and where A is a valid instrumental variable for the effect
β of X on Y (as in Bühlmann’s Figure 6 with no A → H
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and no A → Y edges, see Figure 1(a) in this commen-
tary). The classical aim of causal inference is to to es-
timate β: we may be interested in β because under the
above SEM this parameter represents the effect on Y of
fixing X at x versus fixing it at x + 1, that is, the average
causal effect β = E(Y |do(X = x +1))−E(Y |do(X = x))

(due to linearity and no interaction, the marginal and the
conditional average causal effects are the same in this spe-
cial case; but we must not forget that this does not hold for
more general models1).

In the above model, we know that (i) a linear regres-
sion of Y on X results in a biased estimator for β due to
the hidden confounder H , unless the H → X or H → Y

relations vanish; (ii) using A as an instrument to perform
two-stage least squares (2SLS) yields a consistent estima-
tor of β; (iii) regressing Y on both X and A (or partialling
out A first) typically results in even more bias than ap-
proach (i). This last phenomenon is known as ‘bias am-
plification’ (Pearl, 2010). Intuitively, the amplification oc-
curs because including the IV A as additional regressor
explains away some of the ‘free’ variability in X, with the
variability due to H remaining, and hence amplifying the
bias due to unobserved confounding by H (Greenland and
Pearl, 2011).

When using anchor regression, (i) corresponds to γ =
1, (ii) to γ = ∞, and (iii) to γ = 0. Hence, when A is
a valid instrument, we can roughly say the larger γ the
less bias we have in estimating β; at the same time (due
to Theorem 4.1) for large γ we minimise worst-case pre-
diction risk under large shift perturbations but not under
small shift perturbations.

Consider now the case where A is not a valid instrument
(see Figure 1(b) in this commentary) and

Y = βX + αH + ξA + ε,

with ξ �= 0 (note that under the shift perturbations ξA is
replaced by the shift v). In this case, we know (i′) a linear
regression of Y on X results in a ‘doubly biased’ estima-
tor for β due to the hidden confounder H and the hidden
(unused) confounder A; (ii′) using A as an instrument to
perform two-stage least-squares will also yield a biased
estimator of β as A is now not a valid IV anymore; (iii′)

1Much of the causal inference literature is concerned with robust es-
timation of a marginal causal effects under considerably weaker para-
metric assumptions than a linear SEM.
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