CORRECTION NOTE: "STATISTICAL INFERENCE FOR THE MEAN OUTCOME UNDER A POSSIBLY NONUNIQUE OPTIMAL TREATMENT RULE"

BY ALEX LUEDTKE¹, AURÉLIEN BIBAUT^{2,*} AND MARK VAN DER LAAN^{2,†}

¹*Department of Statistics, University of Washington, aluedtke@uw.edu* ²*Division of Biostatistics, University of California, Berkeley,* **aurelien.bibaut@berkeley.edu;* †*laan@berkeley.edu*

The end of the proof of Lemma 6 in [2] contains an error. Specifically, it is not generally true that $n^{\beta-1} \sum_{j=1}^n R_j \stackrel{d}{=} n^{\beta-1} \sum_{j=1}^n R'_j(\omega')$. As is evidenced by the counterexample in [1], the claim of that lemma does not generally hold unless an additional condition is imposed. Below we state a correction to that lemma that adopts one such condition. Alternative sets of conditions that yield a similar conclusion can be found in [1].

LEMMA 1 (Revision of Lemma 6 in [2]). *Suppose that Rj is some sequence of realvalued random variables defined on a common probability space* $(\Omega, \mathcal{F}, \nu)$ *and such that* $j^{\beta}R_j \stackrel{a.s.}{\longrightarrow} 0$ *for some* $\beta \in [0, 1)$. *Then* $n^{\beta-1} \sum_{j=1}^n R_j \stackrel{a.s.}{\longrightarrow} 0$, and so $n^{-1} \sum_{j=1}^n R_j =$ $o_n(n^{-\beta})$.

PROOF. Let $\tilde{\Omega} \triangleq {\omega \in \Omega : \lim_{j \to \infty} j^{\beta} R_j(\omega) = 0}$. Fix $\epsilon > 0$ and let $\omega \in \tilde{\Omega}$. There exists some *N* that, for all $n \ge N$, $n^{\beta} |R_n(\omega)| < \frac{(1-\beta)\epsilon}{2}$. Also,

$$
\frac{1}{n^{1-\beta}}\sum_{j=1}^n j^{-\beta} \le \frac{1}{n^{1-\beta}} \int_1^n (j-1)^{-\beta} \, dj = \frac{1}{1-\beta}.
$$

Hence, for all $n \geq N$,

$$
\frac{1}{n^{1-\beta}} \sum_{j=1}^{n} |R_j(\omega)| = \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{1}{n^{1-\beta}} \sum_{j=N}^{n} \frac{1}{j^{\beta}} j^{\beta} |R_j(\omega)|
$$

$$
< \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{(1-\beta)\epsilon}{2n^{1-\beta}} \sum_{j=N}^{n} \frac{1}{j^{\beta}}
$$

$$
\leq \frac{1}{n^{1-\beta}} \sum_{j=1}^{N-1} |R_j(\omega)| + \frac{\epsilon}{2}.
$$

It follows that $\frac{1}{n^{1-\beta}}\sum_{j=1}^{n} |R_j(\omega)| < \epsilon$ for all *n* large enough, and thus that $n^{\beta-1}\sum_{j=1}^{n} R_j(\omega)$ converges to zero as $n \to \infty$. As $\omega \in \tilde{\Omega}$ was arbitrary and $\nu(\tilde{\Omega}) = 1$, $n^{\beta - 1} \sum_{j=1}^{n} R_j$ converges to zero almost surely and, therefore, also in probability. \square

The following statements in [2] built on Lemma 6 and, therefore, must be modified to account for the above revision of this lemma:

Received October 2020.

MSC2020 subject classifications. Primary 62G05; secondary 62N99.

Key words and phrases. Efficient estimator, nonregular inference, online estimation, optimal treatment, pathwise differentiability, semiparametric model, optimal value.